Featured Research

from universities, journals, and other organizations

The spliceosome: More than meets the eye

Date:
September 26, 2013
Source:
Brandeis University
Summary:
In a recent paper, a team of researchers explain how the molecular machine known as the spliceosome begins the process of rearranging gene sequences in RNA splicing.

The single-molecule florescence microscope can view individual molecules.
Credit: Diana Hunt

Certain diseases such as cystic fibrosis and muscular dystrophy are linked to genetic mutations that damage the important biological process of rearranging gene sequences in pre-messenger RNA, a procedure called RNA splicing.

Related Articles


These conditions are difficult to prevent because scientists are still grasping to understand how the splicing process works. Now, researchers from Brandeis University and the University of Massachusetts Medical School have teamed up to unravel a major component in understanding the process of RNA splicing.

In a recent paper published in Cell Press, research specialist Inna Shcherbakova of Brandeis and UMMS, and a team of researchers led by professors Jeff Gelles (Brandeis) and Melissa J. Moore (UMMS), explain how the molecular machine known as the spliceosome begins the process of rearranging gene sequences.

In order to convey instructions for synthesizing protein to the ribosome, RNA -- a transcribed copy of DNA -- must be translated into mRNA. Part of the process of translating pre-messenger RNA into mRNA involves cutting out gene segments that don't contain information relevant to protein synthesis, called introns, and connecting the remaining pieces together.

The spliceosome does the genetic cutting and pasting. It is a complicated complex, made up of four major parts and more than 100 accessory proteins that come together and break apart throughout the splicing process. Think of the spliceosome as an old Transformers robot -- it has individual pieces that operate independently but can also come together to form a larger structure.

Sometimes, such as in the case of cystic fibrosis, a mutation will cause the spliceosome to snip in the wrong place, cutting out important sequences instead of introns, and resulting in the production of a faulty protein.

In studying the Transformer-like spliceosome, researchers have been unable to reconcile how the different components of the complex coordinate. To initiate the splicing process, two pieces of the spliceosome bind to the two ends of an intron. Until now, scientists believed this to be highly ordered process: first Part 1 bound, and then it would somehow tell Part 2 to attach.

In a highly ordered process in primitive organisms such as yeast, the introns are small and it's easy for Part 1 and Part 2 to communicate. But how would that process work in humans, where introns are made up of thousands of nucleotides? How could the two parts -- which jumpstart the whole splicing process -- communicate?

To find out, Shcherbakova aimed a single-molecule florescence microscope built in the Gelles lab at the spliceosome. By tagging the different parts of the complex with fluorescent colors, the team discovered that the process is more flexible than scientists imagined.

The two first major components of the spliceosome do not need to communicate with one another to start the splicing process, nor does it matter which piece attaches to the gene first. Either of the components, called U1 and U2, can attach first and the process works equally well.

"The process is much more sensible than we originally thought," Gelles says.

Now that scientists understand how the major components of splicing can come together, they can study how the different steps of the process are orchestrated.

"We are just scratching the surface in understanding this process, but ultimately, we hope to understand how this process goes wrong and how it can be fixed," Gelles says.


Story Source:

The above story is based on materials provided by Brandeis University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Inna Shcherbakova, Aaron A. Hoskins, Larry J. Friedman, Victor Serebrov, Ivan R. Corręa, Ming-Qun Xu, Jeff Gelles, Melissa J. Moore. Alternative Spliceosome Assembly Pathways Revealed by Single-Molecule Fluorescence Microscopy. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.08.026

Cite This Page:

Brandeis University. "The spliceosome: More than meets the eye." ScienceDaily. ScienceDaily, 26 September 2013. <www.sciencedaily.com/releases/2013/09/130926205003.htm>.
Brandeis University. (2013, September 26). The spliceosome: More than meets the eye. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2013/09/130926205003.htm
Brandeis University. "The spliceosome: More than meets the eye." ScienceDaily. www.sciencedaily.com/releases/2013/09/130926205003.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Whale-Watching Scientists Spot Baby Orca

Whale-Watching Scientists Spot Baby Orca

AP (Feb. 28, 2015) — Researchers following endangered killer whales spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population dangerously low. (Feb. 28) Video provided by AP
Powered by NewsLook.com
The Best Drinks for Your Health

The Best Drinks for Your Health

Buzz60 (Feb. 27, 2015) — When it comes to health and fitness, there&apos;s lots of talk about what foods to eat, but there are a few liquids that can promote good nutrition. Krystin Goodwin (@krystingoodwin) has the healthiest drinks to boost your health! Video provided by Buzz60
Powered by NewsLook.com
Cherries, Snap Peas and More Tasty Spring Produce

Cherries, Snap Peas and More Tasty Spring Produce

Buzz60 (Feb. 27, 2015) — From sweet cherries to sugar snap peas, spring is the peak season for some of the tastiest and healthiest produce. Krystin Goodwin (@Krystingoodwin) has the best seasonal fruits and veggies to spring in to good health! Video provided by Buzz60
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) — If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins