Featured Research

from universities, journals, and other organizations

Constellation in the chaos of cancer chromosomes

November 1, 2013
Howard Hughes Medical Institute (HHMI)
New evidence suggests that aneuploidy patterns of chromosome deletion or amplification that are recurrent among tumors actually represent a driving force during tumor evolution and are very frequent in cancer.

Stephen Elledge and his colleagues believe they can now explain why cancer cells contain many more chromosome abnormalities (right) than healthy cells (left).
Credit: Joanne Davidson, Mira Grigorova and Paul Edwards/University of Cambridge

The most striking visual hallmark of cancer cells is their abnormal number of chromosomes and chromosome arms. This feature, known as aneuploidy, was first seen in 1914 by Theodor Boveri who observed that tumor cells consistently display an abnormal number of chromosomes -- either missing entirely, missing parts, or copied over as extras -- compared to normal diploid cells.

Related Articles

Yet a century after Boveri, scientists still aren't exactly sure if aneuploidy and other kinds of related chromosomal mayhem drive tumorigenesis or if they are simple bystanders. An answer to this longstanding conundrum has now emerged from a new computational study by Howard Hughes Medical Institute investigator Stephen J. Elledge and colleagues at Harvard Medical School who present evidence that aneuploidy patterns of chromosome deletion or amplification that are recurrent among tumors actually represent a driving force during tumor evolution and are very frequent in cancer.

Elledge's study, published October 31, 2013 in the journal Cell, looked at sequencing data from 8,200 tumors of all types, comprising a total of 1.2 million mutations. The scientists developed the computational method, called Tumor Suppressor and Oncogene (TUSON) Explorer, to analyze the patterns of mutational signatures in tumors and predict the likelihood that any individual gene functions as a tumor suppressor gene (TSG) or oncogene (OG). They used TUSON Explorer to comb through the tumor sequencing data to predict known and novel cancer drivers. More generally, the team was looking for what Elledge calls "STOP and GO" genes. "STOP genes are genes that inhibit proliferation and tumorigenesis, TSGs for example, by blocking abnormal cell division," said Elledge. "GO genes are either oncogenes or genes essential for normal or cancerous cell proliferation."

In this study, Elledge's team was able to mathematically characterize the STOP, GO, and essential genes they found. They placed these genes onto their normal chromosome locations and then looked at the balance of STOP and GO genes on each chromosome, giving each chromosome and chromosome arm a score. They found that chromosomes or chromosome arms that in balance had a preponderance of STOP genes were much more likely to be deleted in tumors. They found the opposite for GO genes. Chromosomes with the highest density of GO genes relative to STOP genes were the most likely to be amplified in tumors.

"The fact that analysis of genes inhibiting or promoting tumorigenesis on chromosomes could predict aneuploidy so well means that specific aneuploid events are selected for and therefore drive tumorigenesis," Elledge said. What emerged from their studies is a much more nuanced but intriguing view of the twisted geography of the genomic landscape of a tumor.

Extra or missing chromosomes are the most visible signs of aneuploidy's genetic maelstrom but they also include the deletion or addition of chromosome arms, along with genetic translocations. The "average" tumor in Elledge's dataset of 8,200 sequenced tumors had a mean number of one OG mutation, three TSG mutations, three chromosomal arm gains, five chromosomal arm losses, two whole chromosome gains, two whole chromosome losses, 12 deletions in a key focal region and 11 focal amplifications.

Traditionally, the few mutated TSGs and OGs in each tumor have been thought to represent the main cancer drivers. "We now propose that along with these mutational drivers, copy number changes (which are much more frequent) represent an important co-pilot of cancer cells," said Elledge.

In the classical "two hit" hypothesis for tumor suppressors, a first mutational hit in a TSG does not result in a cancerous effect, while losing both copies would promote tumor formation. Elledge and his colleagues now propose that for many tumor suppressor genes mutated in sporadic cancer even the first hit has an effect in promoting cancer. "This is due to the fact that only one copy of many tumor suppressor genes is not enough to restrain tumorigenesis, a feature called 'haploinsufficiency,'" he noted.

Importantly, this concept also applies to large deletions, where loss of one copy of whole groups of genes represents the first hit. The remaining copies of these genes would be unable to crank out sufficient protein to fully execute its TSG or STOP function, due to haploinsufficiency and would act in a cumulative fashion to drive tumorigenesis. The opposite effect of haploinsufficiency is triplosensitivity where extra copies of GO genes are produced by amplifications. The over-repeated GO gene overexpresses its gene product, an ideal outcome for tumor progression.

Haploinsufficency and triplosensitivity are the prime movers of a cumulative process that shapes the cancer genome, Elledge now believes. "The aneuploidy is actually driving the cancer," he says. "It's the summation of all these growth controlling and survival genes that when they are not mutant are having their effect. A big part of what's promoting cancer has to do with a constellation of these chromosome level events, not just point mutations in tumor suppressing genes or oncogenes."

Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute (HHMI). Note: Materials may be edited for content and length.

Journal Reference:

  1. Teresa Davoli, AndrewWei Xu, KristenE. Mengwasser, LauraM. Sack, JohnC. Yoon, PeterJ. Park, StephenJ. Elledge. Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome. Cell, 2013; DOI: 10.1016/j.cell.2013.10.011

Cite This Page:

Howard Hughes Medical Institute (HHMI). "Constellation in the chaos of cancer chromosomes." ScienceDaily. ScienceDaily, 1 November 2013. <www.sciencedaily.com/releases/2013/11/131101125302.htm>.
Howard Hughes Medical Institute (HHMI). (2013, November 1). Constellation in the chaos of cancer chromosomes. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2013/11/131101125302.htm
Howard Hughes Medical Institute (HHMI). "Constellation in the chaos of cancer chromosomes." ScienceDaily. www.sciencedaily.com/releases/2013/11/131101125302.htm (accessed January 26, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins