Featured Research

from universities, journals, and other organizations

How argonaute proteins intervene in gene regulation process

Date:
November 13, 2013
Source:
Heidelberg, Universität
Summary:
Scientists identify protein motifs that influence gene silencing.

The puzzle shown symbolizes the four principle domains from which human Argonaute proteins are built and the need for them to be combined correctly to form a functional Ago2 protein. The PIWI domain, shown in green, was previously thought to be responsible for slicing messenger RNA. Shown in blue is the N domain, where Heidelberg scientists have now identified two additional important motifs.
Credit: Dirk Grimm

Bioscientists at Heidelberg University have studied the function of certain proteins, known as Argonaute (Ago) proteins, in the process of gene regulation. They sought to understand why only the Ago2 protein is able to target and directly turn off genes in humans, while the closely related Ago3 protein is not. Using a new investigative method, researchers working with Dr. Dirk Grimm were able to identify for the first time two "motifs" of this protein that, when properly combined with an already known protein domain, give Ago2 its gene-silencing capability. The researchers hope that the results will open up new avenues in basic biological and medical research toward artificially induced gene silencing.

With the aid of their special "directed protein evolution" method, the Heidelberg scientists were able to generate a large library of "hybrids" from human Ago2 and its close cousin Ago3. Individual proteins with the characteristics -- the phenotype -- of Ago2 were isolated from these chimaeras. A comparative bioinformatic analysis of the candidates with the strongest Ago2 phenotype yielded an "astonishing result," according to Dr. Grimm. The researchers from Heidelberg University's "CellNetworks" Cluster of Excellence observed a recurring accumulation of two short motifs in a special domain of the Argonaute protein, the N terminus at the end of the protein.

"This result was unexpected since the prevailing view holds that a completely different and known protein domain called the PIWI domain is solely responsible for the gene-regulating properties of Ago2," explains Dr. Grimm. "We were able to show, however, that only the correct combination of these three protein components gives Ago2 the ability to turn off genes in a special way." Gene silencing is based on what is known as RNA interference. Ago2, also called the slicer, slices the messenger RNA that transports the data stored in the DNA and translates it into proteins.

According to lead author Nina Schürmann, the results of this research provide new insight into Argonaute proteins. The results demonstrate that special Ago functions are not determined by isolated protein domains, but through the complex interaction of multiple activating or inhibiting domains. The researchers now hope that they will be able to generate completely new protein characteristics in future and, as a result, possibly even further improve RNA interference processes, according to Dr. Grimm. To advance the research further, the Heidelberg scientists generated a library of chimaeras of all four human Argonaute proteins as well as developed analysis software that can also benefit other users. In cooperation with Prof. Dr. Robert Russell and Dr. Leonardo Trabuco, likewise researchers in the "CellNetworks" Cluster of Excellence, a structure of human Ago3 could be modelled for the first time.

Dirk Grimm directs the CellNetworks "Virus-Host Interactions" Junior Research Group, which is located in the BioQuant Center of Heidelberg University. The group belongs to Heidelberg University Hospital's Department of Infectious Diseases under the direction of Prof. Dr. Hans-Georg Kräusslich and is supported by the Chica and Heinz Schaller Foundation (CHS). The results of the research were published in "Nature Structural & Molecular Biology."


Story Source:

The above story is based on materials provided by Heidelberg, Universität. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nina Schürmann, Leonardo G Trabuco, Christian Bender, Robert B Russell, Dirk Grimm. Molecular dissection of human Argonaute proteins by DNA shuffling. Nature Structural & Molecular Biology, 2013; 20 (7): 818 DOI: 10.1038/nsmb.2607

Cite This Page:

Heidelberg, Universität. "How argonaute proteins intervene in gene regulation process." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113125709.htm>.
Heidelberg, Universität. (2013, November 13). How argonaute proteins intervene in gene regulation process. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/11/131113125709.htm
Heidelberg, Universität. "How argonaute proteins intervene in gene regulation process." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113125709.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) — President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins