Featured Research

from universities, journals, and other organizations

Chromosomes show off their shapes

Date:
November 25, 2013
Source:
Weizmann Institute of Science
Summary:
Researchers calculate the shape of a chromosome. The new view of our chromosomes reveals a complex picture.

Chromosomes -- the 46 tightly-wrapped packages of genetic material in our cells -- are iconically depicted as X-shaped formations. However, those neat X's only appear when a cell is about to divide and the entire contents of its genome duplicated. Until now researchers have not been able to get a good picture of the way that our DNA -- some two meters of strands all told -- is neatly bundled into the nucleus while enabling day-to-day (non-dividing) gene activity. A combination of new techniques for sequencing DNA in individual chromosomes and analyzing data from thousands of measurements has given us a new picture of the 3-D structures of chromosomes. This method, the result of an international collaboration, which was recently reported in Nature, promises to help researchers understand the basic processes by which gene expression is regulated and genome stability maintained.

Prof. Amos Tanay of the Weizmann Institute's Computer Science and Applied Mathematics and the Biological Regulation Departments develops advanced computer algorithms for analyzing genomic datasets, which can run to billions of bits of information. He and his team, including PhD students Yaniv Lubling and Eitan Yaffe, joined forces with Dr. Peter Fraser of the Babraham Institute, UK, in an attempt to resolve chromosomal architectures at an unprecedentedly high resolution. Rather than the traditional microscopy techniques, they harnessed the power of modern high-throughput DNA sequencing. Fraser and his team developed a sophisticated sequencing method for taking thousands of measurements of the contacts between genes inside single cells. While these techniques vastly improve upon approaches that average the conformations of millions of chromosomes, the data generated from just the few trillionths of a gram of DNA present within a single cell can only be interpreted by advanced statistical methods. Tanay and his team performed the complex computer analysis that turned millions of DNA sequences into reliable maps describing contacts between genes along individual chromosomes. Given these maps, the team, in collaboration with Dr. Ernest Laue of Cambridge University, UK, was able to produce 3-D models of individual chromosome structures.

Interestingly, the new high resolution depictions of chromosomal architecture indicate that the structure of the same DNA molecule can vary markedly between different cells. At the same time, the results point to some basic principles that underlie the genes' organization. Their arrangement appears to be modular and based on the functions of the thousands of genes embedded within each chromosome. The data suggests that chromosomes expose the more active genes at their boundaries, possibly allowing these genes better access to the cellular machinery that regulates them.

Besides giving us a unique, surprising view of the structure of the chromosomes in our cells, the researchers believe that their method will present genetics research with a powerful new tool. For example, it may help uncover the variations in genetic activity between different types of cells, or promote understanding of the mechanisms determining gene activity or quiescence in various normal or disease conditions. The rapidly increasing power of massive DNA sequencing promises to make studies such as this even more powerful in the near future.


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Takashi Nagano, Yaniv Lubling, Tim J. Stevens, Stefan Schoenfelder, Eitan Yaffe, Wendy Dean, Ernest D. Laue, Amos Tanay, Peter Fraser. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013; 502 (7469): 59 DOI: 10.1038/nature12593

Cite This Page:

Weizmann Institute of Science. "Chromosomes show off their shapes." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125121807.htm>.
Weizmann Institute of Science. (2013, November 25). Chromosomes show off their shapes. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2013/11/131125121807.htm
Weizmann Institute of Science. "Chromosomes show off their shapes." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125121807.htm (accessed August 2, 2014).

Share This




More Plants & Animals News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins