Featured Research

from universities, journals, and other organizations

Slippery fault unleashed destructive Tohoku-Oki earthquake and tsunami

Date:
December 5, 2013
Source:
University of California - Santa Cruz
Summary:
For the first time, scientists have measured the frictional heat produced by the fault slip during an earthquake. Their results show that friction on the fault was remarkably low during the magnitude 9.0 Tohoku-Oki earthquake that struck off the coast of Japan in March 2011 and triggered a devastating tsunami.

The scientific drilling vessel Chikyu, shown here with Mt. Fuji in the background, drilled across the Tohoku fault in 2012.
Credit: JAMSTEC/IODP

For the first time, scientists have measured the frictional heat produced by the fault slip during an earthquake. Their results, published December 5 in Science, show that friction on the fault was remarkably low during the magnitude 9.0 Tohoku-Oki earthquake that struck off the coast of Japan in March 2011 and triggered a devastating tsunami.

"The Tohoku fault is more slippery than anyone expected," said Emily Brodsky, a geophysicist at the University of California, Santa Cruz, and coauthor of three papers on the Tohoku-Oki earthquake published together in Science. All three papers are based on results from the international Japan Trench Fast Drilling Project (JFAST), which Brodsky helped organize.

Because friction generates heat (like rubbing your hands together), taking the temperature of a fault after an earthquake can provide a measure of the fault's frictional resistance to slip. But that hasn't been easy to do. "It's been difficult to get this measurement because the signal is weak and it dissipates over time, so we needed a big earthquake and a rapid response," said Brodsky, a professor of Earth and planetary sciences at UCSC.

The JFAST expedition drilled across the Tohoku fault in 2012 and installed a temperature observatory in one of three boreholes nearly 7 kilometers below the ocean surface. The logistically and technically challenging operation successfully recovered temperature measurements and other data as well as core samples from across the fault.

The low resistance to slip on the fault may help explain the large amount of slip--an unprecedented 50 meters of displacement--that occurred during the earthquake, according to UC Santa Cruz researcher Patrick Fulton, who is first author of the paper focusing on the temperature measurements. An abundance of weak, slippery clay material in the fault zone--described in the two companion papers--may account for the low friction during the earthquake, he said.

The Tohoku-Oki earthquake occurred in a "subduction zone," a boundary between two tectonic plates where one plate is diving beneath another--in this case, the Pacific plate dives beneath the Eurasian plate just east of Japan. Fulton explained that the epicenter, where the earthquake started, was much deeper than the shallow portion of the fault examined by JFAST. One of the surprising things about the earthquake, in addition to the 50 meters of slip, was that the fault ruptured all the way to the surface of the seafloor.

"The large slip at shallow depths contributed to the tsumani that caused so much damage in Japan. Usually, these earthquakes don't rupture all the way to the surface," Fulton said.

The strain that is released in a subduction zone earthquake is thought to build up in the deep portion of the fault where the two plates are "locked." The shallow portion of the fault was not expected to accumulate a large amount of stress and was considered unlikely to produce a large amount of slip. The JFAST results show that the frictional stress on the shallow portion of the fault was very low during the earthquake, which means that either the stress was low to begin with or all of the stress was released during the earthquake.

"It's probably a combination of both--the fault was pretty slippery to begin with, and whatever stress was on the fault at that shallow depth was all released during the earthquake," Fulton said.

An earlier paper by JFAST researchers, published in Science in February 2013 (Lin et al.), also suggested a nearly total stress drop during the earthquake based on an analysis of geophysical data collected during drilling.

"We now have four lines of evidence that frictional stress was low during the earthquake," Brodsky said. "The key measure is temperature, but those results are totally consistent with the other papers."

One of the new papers (Ujiie et al.) presents the results of laboratory experiments on the material recovered from the fault zone. Tests showed very low shear stress (resistance to slip) attributable to the abundance of weak, slippery clay material. The other paper (Chester et al.) focuses on the geology and structure of the fault zone. In addition to the high clay content, the researchers found that the fault zone was surprisingly thin (less than 5 meters thick).

J. Casey Moore, a research professor of Earth sciences at UCSC and coauthor of the Chester et al. paper, said he suspects the clay layer observed in the Tohoku fault zone may play an important role in other fault zones. "Looking for something like that clay may give us a tool to understand the locations of earthquakes that cause tsunamis. It's potentially a predictive tool," Moore said.

According to Brodsky, measuring the frictional forces on the fault is the key to a fundamental understanding of earthquake mechanics. "We've been hamstrung without in situ measurements of frictional stress, and we now have that from the temperature data," she said. "It's hard to say how generalizable these results are until we look at other faults, but this lays the foundation for a better understanding of earthquakes and, ultimately, a better ability to identify earthquake hazards."


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. The original article was written by Tim Stephens. Note: Materials may be edited for content and length.


Journal References:

  1. F. M. Chester, C. Rowe, K. Ujiie, J. Kirkpatrick, C. Regalla, F. Remitti, J. C. Moore, V. Toy, M. Wolfson-Schwehr, S. Bose, J. Kameda, J. J. Mori, E. E. Brodsky, N. Eguchi, S. Toczko. Structure and Composition of the Plate-Boundary Slip Zone for the 2011 Tohoku-Oki Earthquake. Science, 2013; 342 (6163): 1208 DOI: 10.1126/science.1243719
  2. K. Ujiie, H. Tanaka, T. Saito, A. Tsutsumi, J. J. Mori, J. Kameda, E. E. Brodsky, F. M. Chester, N. Eguchi, S. Toczko. Low Coseismic Shear Stress on the Tohoku-Oki Megathrust Determined from Laboratory Experiments. Science, 2013; 342 (6163): 1211 DOI: 10.1126/science.1243485
  3. P. M. Fulton, E. E. Brodsky, Y. Kano, J. Mori, F. Chester, T. Ishikawa, R. N. Harris, W. Lin, N. Eguchi, S. Toczko. Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements. Science, 2013; 342 (6163): 1214 DOI: 10.1126/science.1243641

Cite This Page:

University of California - Santa Cruz. "Slippery fault unleashed destructive Tohoku-Oki earthquake and tsunami." ScienceDaily. ScienceDaily, 5 December 2013. <www.sciencedaily.com/releases/2013/12/131205170103.htm>.
University of California - Santa Cruz. (2013, December 5). Slippery fault unleashed destructive Tohoku-Oki earthquake and tsunami. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/12/131205170103.htm
University of California - Santa Cruz. "Slippery fault unleashed destructive Tohoku-Oki earthquake and tsunami." ScienceDaily. www.sciencedaily.com/releases/2013/12/131205170103.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Deep-Sea Study Reveals Cause of 2011 Tsunami: Unusually Thin, Slippery Geological Fault Found

Dec. 5, 2013 The tsunami that struck Japan’s Tohoku region in 2011 was touched off by a submarine earthquake far more massive than anything geologists had expected in that zone. Now, a team of scientists has ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins