Featured Research

from universities, journals, and other organizations

Decoding viral puzzles

Date:
December 10, 2013
Source:
Sissa Medialab
Summary:
The genome of viruses is usually enclosed inside a shell called capsid. Capsids have unique mechanic properties: they have to be resistant and at the same time capable of dissolving in order to release the genome into the infected cell. Scientists have coordinated a study on the mechanic properties of viruses that have improved their understanding, so much that they were able to make conjectures on the behavior of still little-known viruses.

Representation of a viral capsid. The yellow dots mark the edges of the mechanic ‘tiles.’
Credit: SISSA

The genome of viruses is usually enclosed inside a shell called capsid. Capsids have unique mechanic properties: they have to be resistant and at the same time capable of dissolving in order to release the genome into the infected cell. The scientists of the International School for Advanced Studies (SISSA) of Trieste have coordinated a study on the mechanic properties of viruses that have improved their understanding, so much that they were able to make conjectures on the behavior of still little-known viruses.

Viruses are like small vessels containing an active component, the genetic material, that can infect a host cell. The vessel, called capsid or vector, is basically a shell that changes its shape when it penetrates a cell to infect it, and may even break into pieces. The research team, that includes Guido Polles and Cristian Micheletti of SISSA, carried out computer simulations and used theoretical models to understand how such 'vessel' responds to thermal and mechanic stimulations. In such a way they identified the weak points of capsids and inferred their spontaneous assembly process.

Each shell is made of numerous protein 'tiles' that spontaneously join up like Lego pieces. A capsid may be composed of hundreds of such subunits, but each 'tile' consists of a limited number of proteins. The edges of the tiles are the "weak" lines where the deformation of the general structures takes place and along which the shell fragments if broken. Experimental observations have been carried out for some types of viruses to understand the internal dynamic of the vector (deformation) and the shape of the single tiles (which is usually rather regular -- pentagons, hexagons, triangles). Micheletti and his colleagues produced a virtual model that, in principle, may be applied to any virus whose structure is known.

"Starting from the available information on the molecular structure of the capsid, we tried to 'tease' it a little to see the way it changed its shape. By simulating thermal fluctuations (to put it more simply, we virtually heated and then cooled it) observing along which lines the shell would modify. It is very likely that these very lines are also the spots in which the capsid will tend to break up." explained Polles and Micheletti. "Our model turned out to be very robust. The simulations, in fact, reproduced the same conditions observed in the experiments on known capsids. For this reason we have made other speculations on capsids on which we have no direct knowledge in this sense."

The research, carried out alongside with University of York (UK), Universitΰ di Torino and the Max Planck Institute of Mainz (Germany), was published in Plos Computational Biology. The studies on the nature of viral capsids are important to understand the mechanisms of virus infection (and to study methods to fight it).

Viral vectors, besides, are used in pharmacology and in gene therapy. The viruses' shells in fact may be employed as vectors to insert a therapy directly into cells, a cutting-edge methodology in today's medicine. Being able to identify the mechanically weak spots may be exploited, in perspective, to modify the natural capsids optimizing their resilience to convey and deliver the pharmacologic content more effectively.


Story Source:

The above story is based on materials provided by Sissa Medialab. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guido Polles, Giuliana Indelicato, Raffaello Potestio, Paolo Cermelli, Reidun Twarock, Cristian Micheletti. Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition. PLoS Computational Biology, 2013; 9 (11): e1003331 DOI: 10.1371/journal.pcbi.1003331

Cite This Page:

Sissa Medialab. "Decoding viral puzzles." ScienceDaily. ScienceDaily, 10 December 2013. <www.sciencedaily.com/releases/2013/12/131210071948.htm>.
Sissa Medialab. (2013, December 10). Decoding viral puzzles. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/12/131210071948.htm
Sissa Medialab. "Decoding viral puzzles." ScienceDaily. www.sciencedaily.com/releases/2013/12/131210071948.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) — Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) — With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins