Featured Research

from universities, journals, and other organizations

Liquid to gel to bone: Temperature-sensitive gelling scaffolds made to regenerate craniofacial bone

Date:
December 11, 2013
Source:
Rice University
Summary:
Bioengineers have developed a hydrogel scaffold for craniofacial bone tissue regeneration that starts as a liquid, solidifies into a gel in the body and liquefies again for removal.

Injectable hydrogel scaffold undergoes rapid gelation from a soluble liquid at room temperature, left, to form a stable, nonshrinking gel at body temperature, right, after one minute.
Credit: Mikos Laboratory/Rice University

Rice University bioengineers have developed a hydrogel scaffold for craniofacial bone tissue regeneration that starts as a liquid, solidifies into a gel in the body and liquefies again for removal.

The material developed in the Rice lab of bioengineer Antonios Mikos is a soluble liquid at room temperature that can be injected to the point of need. At body temperature, the material turns instantly into a gel to help direct the formation of new bone to replace that damaged by injury or disease.

The gel conforms to irregular three-dimensional spaces and provides a platform for functional and aesthetic tissue regeneration. It is intended as an alternative to prefabricated implantable scaffolds.

The invention is the subject of a new paper that appeared online this week in the American Chemical Society journal Biomacromolecules.

Lead author Tiffany Vo, a fourth-year doctoral graduate student in the Mikos lab, earned a Ruth L. Kirschstein National Research Service Award from the National Institute of Dental and Craniofacial Research for her work on the project.

"This new platform technology leverages injectable, thermally responsive, chemically crosslinkable and bioresorbable hydrogels for regenerative medicine applications," Mikos said. "It enables the formation of scaffolds locally and the delivery of growth factors and stem cells into defects of complex anatomical shapes with minimal surgical intervention."

Thermosensitive technologies are not new to the field of tissue engineering and regenerative medicine, Mikos said. What makes the poly(N-isopropylacrylamide), or PNiPAAm, scaffold promising is that its chemical cross-linking technology allows the researchers to eliminate gel shrinkage without reducing swelling; this improves its stability so that it serves as an effective delivery vehicle for growth factors and stem cell populations.

Once sufficient quality and quantity of bone tissue have regenerated to fill the defected site, the hydrogel scaffold can be transitioned back into a liquid state and released naturally.

As part of the project, the researchers will test the hydrogel's enhanced seeding capabilities and ability to promote cellular attachment, crosstalk and proliferation toward greater bone formation. The knowledge will improve the understanding of biomaterial-based therapies for minimally invasive tissue regeneration as viable clinical alternatives.

"The results demonstrate the ability to encapsulate stem cell populations with temperature-sensitive gelling scaffolds for injectable cell delivery with enormous implications for the development of novel therapeutics for craniofacial bone regeneration," Mikos said.

Co-authors include Adam Ekenseair, a former postdoctoral fellow in the Mikos Lab and currently an assistant professor of chemical engineering at Northeastern University, and Kurt Kasper, a faculty fellow in bioengineering at Rice. Mikos is Rice's Louis Calder Professor of Bioengineering and Chemical and Biomolecular Engineering.

The National Institutes of Health, the Baylor College of Medicine Scientific Training Program for Dental Academic Researchers and the Kirschstein fellowship supported the research.


Story Source:

The above story is based on materials provided by Rice University. The original article was written by Mike Williams. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tiffany N. Vo, Adam K. Ekenseair, Fred Kurtis Kasper, Antonios G. Mikos. Synthesis, Physicochemical Characterization, and Cytocompatibility of Bioresorbable, Dual-Gelling Injectable Hydrogels. Biomacromolecules, 2013; 131210033924002 DOI: 10.1021/bm401413c

Cite This Page:

Rice University. "Liquid to gel to bone: Temperature-sensitive gelling scaffolds made to regenerate craniofacial bone." ScienceDaily. ScienceDaily, 11 December 2013. <www.sciencedaily.com/releases/2013/12/131211185333.htm>.
Rice University. (2013, December 11). Liquid to gel to bone: Temperature-sensitive gelling scaffolds made to regenerate craniofacial bone. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2013/12/131211185333.htm
Rice University. "Liquid to gel to bone: Temperature-sensitive gelling scaffolds made to regenerate craniofacial bone." ScienceDaily. www.sciencedaily.com/releases/2013/12/131211185333.htm (accessed August 30, 2014).

Share This




More Plants & Animals News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins