Featured Research

from universities, journals, and other organizations

Significant advance reported with genetically modified poplar trees

Date:
December 17, 2013
Source:
Oregon State University
Summary:
Forest geneticists have created genetically modified poplar trees that grow faster, have resistance to insect pests and are able to retain expression of the inserted genes for at least 14 years, a report has just announced.

Forest geneticists at Oregon State University have created genetically modified poplar trees that grow faster, have resistance to insect pests and are able to retain expression of the inserted genes for at least 14 years, a report in the Canadian Journal of Forest Research just announced.

The trees are one of the best successes to date in the genetic modification of forest trees, a field that is much less advanced than GMO products in crop agriculture. The advance could prove especially useful in the paper and pulp industries, and in an emerging biofuel industry that could be based on hybrid poplar plantations.

Commercial use of such trees could be done with poplars that also had been engineered to be sterile so they would be unlikely to spread their characteristics to other trees, researchers said.

Development of male sterile trees has been demonstrated in the field, which can be used for male varieties of poplar. Female sterility has not yet been done but should be feasible, they said. However, it is unclear if regulatory agencies would allow use of these trees, with sterility as a key mitigation factor.

"In terms of wood yield, plantation health and productivity, these GMO trees could be very significant," said Steven Strauss, a distinguished professor of forest biotechnology in the OSU College of Forestry. "Our field experiments and continued research showed results that exceeded our expectations. And it is likely that we have underestimated the value these trees could have in improved growth and production."

A large-scale study of 402 trees from nine "insertion events" tracked the result of placing the cry3Aa gene into hybrid poplar trees. The first phase was done in field trials between 1998 and 2001, and in 14 years since then study continued in a "clone bank" at OSU to ensure that the valued traits were retained with age.

All of the trees were removed or cut back at the age of two years before they were old enough to flower and reproduce, in order to prevent any gene flow into wild tree populations, researchers said.

With this genetic modification, the trees were able to produce an insecticidal protein that helped protect against insect attack. This method has proven effective as a pest control measure in other crop species such as corn and soybeans, resulting in substantial reductions in pesticide use and a decrease in crop losses.

"Insect attack not only can kill a tree, it can make the trees more vulnerable to other health problems," said Amy Klocko, an OSU faculty research associate. "In a really bad year of insect attack you can lose an entire plantation."

Hybrid poplar trees, which are usually grown in dense rows on flat land almost like a food crop, are especially vulnerable to insect epidemics, the researchers said. Manual application of pesticides is expensive and targets a wide range of insects, rather than only the insects that are attacking the trees.

A number of the GMO trees in this study also had significantly improved growth characteristics, the researchers found. Compared to the controls, the transgenic trees grew an average of 13 percent larger after two growing seasons in the field, and in the best case, 23 percent larger.

Some of the work also used a drought-tolerant poplar clone, another advantage in what may be a warmer and drier future climate. The research was supported by the Tree Biosafety and Genomics Research Cooperative at OSU.

Annual crops such as cotton and corn already are routinely grown as GMO products with insect resistance genes. Trees, however, have to grow and live for years before harvest and are subjected to multiple generations of insect pest attacks. That's why engineered insect protection may offer even greater commercial value, and why extended tests were necessary to demonstrate that the resistance genes would still be expressed more than a decade after planting.

Some genetically modified hybrid poplar trees are already being used commercially in China, but none in the United States. The use of GMO trees in the U.S. still faces heavy regulatory obstacles, Strauss said. Agencies are likely to require extensive studies of gene flow and their effects on forest ecosystems, which are difficult to carry out, he said.

Strauss said he advocates an approach of engineering sterility genes into the trees as a mechanism to control gene flow, which together with further ecological research might provide a socially acceptable path for commercial deployment.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amy Leigh Klocko, Venkatesh Viswanath, Cathleen Ma, Rosalind R. James, Guy A. Cardineau, Jeffrey S. Skinner, Brenda Oppert, Peggy Payne, Lawrence Miller, Richard Meilan, Steven H. Strauss. Bt-Cry3Aa transgene expression reduces insect damage and improves growth in field-grown hybrid poplar. Canadian Journal of Forest Research, 2013; 131028143859003 DOI: 10.1139/cjfr-2013-0270

Cite This Page:

Oregon State University. "Significant advance reported with genetically modified poplar trees." ScienceDaily. ScienceDaily, 17 December 2013. <www.sciencedaily.com/releases/2013/12/131217134714.htm>.
Oregon State University. (2013, December 17). Significant advance reported with genetically modified poplar trees. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2013/12/131217134714.htm
Oregon State University. "Significant advance reported with genetically modified poplar trees." ScienceDaily. www.sciencedaily.com/releases/2013/12/131217134714.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Family Pleads for Pet Pig to Stay at Home

Family Pleads for Pet Pig to Stay at Home

AP (Oct. 22, 2014) The Johnson family lost their battle with the Chesterfield County, Virginia Planning Commission to allow Tucker, their pet pig, to stay in their home, but refuse to let the board keep Tucker away. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins