Featured Research

from universities, journals, and other organizations

T-cell research sheds light on why HIV can persist despite treatment

Date:
January 14, 2014
Source:
University of Delaware
Summary:
Research by an international team provides evidence that a particular T-cell type may help researchers better understand why HIV can persist despite treatment.

Ryan Zurakowski (left), shown with doctoral student Fabian Cardozo, is co-author of a paper appearing in Nature Medicine highlighting the role of T-cells in HIV.
Credit: University of Delaware

Ryan Zurakowski, assistant professor of electrical and computer engineering at the University of Delaware, is co-author of a paper appearing in Nature Medicine on Jan. 12 highlighting the role of T-cells in HIV.

The paper, titled "HIV-1 Persistence in CD4+ T-Cells with Stem Cell-Like Properties," provides evidence that a particular T-cell type may help researchers better understand why HIV can persist despite treatment.

Zurakowski's co-authors include Mathias Lichterfeld, the paper's lead author, and researchers from Massachusetts General Hospital (MGH); Ragon Institute of MGH, the Massachusetts Institute of Technology and Harvard University; the First Affiliated Hospital of China Medical University; Brigham and Women's Hospital; and Howard Hughes Medical Institute.

Zurakowski explained that HIV treatments do not kill infected cells. Instead, they stop the infection of new cells, and rely on the virus itself to kill the infected cells. Unfortunately, some cells infected by the virus -- memory T-cells -- are not killed by the virus.

T-cells are a type of lymphocyte, or white blood cell, produced by the thymus gland, that actively participates in the body's immune response. "Memory" T-cells can live for years, or even decades, providing life-long immunity to previously encountered diseases. They can form "quiescent" infections, which last for years, and cause HIV to rebound whenever a patient stops treatment.

During a decade-long study, the researchers discovered that not all memory T-cells are alike. A subgroup of memory T-cells, called "Stem-Cell Memory T-cells" (Tscm), are different, particularly in their ability to produce daughter cells.

The researchers were able to show that the HIV-infected Tscm cells in patients on HIV therapy decayed more slowly than any other type of T-cell. As a result, after 10 years of therapy, the Tscm cells represented 24 percent of the total HIV infected cell population, despite being only 1 percent of the total T-cell population.

This finding is significant, Zurakowski said, because it demonstrates that Tscm cells are the slowest-decaying portion of the HIV reservoir.

"Over time this particular cell type plays an increasingly significant role in sustaining HIV infection in patients that have remained on therapy," he said.

Zurakowski credits the finding to the diligence of Lichterfeld and the researchers at the Ragon Institute in carefully following the same HIV patients for a decade.

"Because the researchers have followed the same patients over a decade, we have created a high fidelity data set that would not otherwise have been possible," he said.

Drugs currently being developed for cancer therapy that target stem-cell metabolic pathways may be able to target this cell type as well, due to the "stem-cell like" nature of the Tscm cells, he continued.

A better understanding of how the HIV virus leverages a cell's stem cell-like properties of cellular immune memory to stay alive could lead to improved clinical strategies for HIV treatment.

"If we can find a way to selectively eliminate the HIV-infected Tscm cells, it will be a major step in developing a true 'cure' for HIV infection," concluded Zurakowski.


Story Source:

The above story is based on materials provided by University of Delaware. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maria J Buzon, Hong Sun, Chun Li, Amy Shaw, Katherine Seiss, Zhengyu Ouyang, Enrique Martin-Gayo, Jin Leng, Timothy J Henrich, Jonathan Z Li, Florencia Pereyra, Ryan Zurakowski, Bruce D Walker, Eric S Rosenberg, Xu G Yu, Mathias Lichterfeld. HIV-1 persistence in CD4 T cells with stem cell–like properties. Nature Medicine, 2014; DOI: 10.1038/nm.3445

Cite This Page:

University of Delaware. "T-cell research sheds light on why HIV can persist despite treatment." ScienceDaily. ScienceDaily, 14 January 2014. <www.sciencedaily.com/releases/2014/01/140114092140.htm>.
University of Delaware. (2014, January 14). T-cell research sheds light on why HIV can persist despite treatment. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/01/140114092140.htm
University of Delaware. "T-cell research sheds light on why HIV can persist despite treatment." ScienceDaily. www.sciencedaily.com/releases/2014/01/140114092140.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Newsy (Sep. 30, 2014) The CDC says a new case of Ebola has not been reported in Nigeria for more than 21 days, leading to hopes the outbreak might be nearing its end. Video provided by Newsy
Powered by NewsLook.com
UN Ebola Mission Head: Immediate Action Is Crucial

UN Ebola Mission Head: Immediate Action Is Crucial

AFP (Sep. 30, 2014) The newly appointed head of the United Nations Mission for Ebola Emergency Response (UNMEER), Anthony Banbury, outlines operations to tackle the virus. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
CDC Confirms First Case of Ebola in US

CDC Confirms First Case of Ebola in US

AP (Sep. 30, 2014) The CDC has confirmed the first diagnosed case of Ebola in the United States. The patient is being treated at a Dallas hospital after traveling earlier this month from Liberia. (Sept. 30) Video provided by AP
Powered by NewsLook.com
New Breast Cancer Drug Extends Lives In Clinical Trial

New Breast Cancer Drug Extends Lives In Clinical Trial

Newsy (Sep. 30, 2014) In a clinical trial, breast cancer patients lived an average of 15 months longer when they received new drug Perjeta along with Herceptin. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins