Featured Research

from universities, journals, and other organizations

Large and in charge: Study shows size matters in prehistoric seas

Date:
January 23, 2014
Source:
University of Toronto
Summary:
Scientists have started to explain why some prehistoric organisms evolved into larger animals. They suggest that height offered a distinct advantage to the earliest forms of multicellular life.

These are fossil remains of Ediacara biota.
Credit: Courtesy of Marc Laflamme

Bigger really is better -- at least it was for early prehistoric life.

A NASA research group featuring University of Toronto Mississauga professor Marc Laflamme has helped to explain why some prehistoric organisms evolved into larger animals.

Laflamme, an assistant professor with the Department of Chemical and Physical Sciences, and his colleagues at the Massachusetts Institute of Technology Node of NASA's Astrobiology Institute suggest that height offered a distinct advantage to the earliest forms of multicellular life.

Working to further the NASA Astrobiology Institute's research into the origins of life on earth and the possibility of life elsewhere in the universe, the multinational group used a technique known as canopy flow modeling to reconstruct ocean currents operating in the deep seas some 580 million years ago.

The three-dimensional modeling helped to illustrate how dense communities of bacteria and multicellular organisms competed for nutrients in Pre-Cambrian seas.

According to the study, published in the science journal Current Biology, primitive multicellular organisms known as Ediacara biota took on larger sizes in order to access nutrient-rich currents occurring above the seabed.

These enigmatic leaf-shaped life-forms grew up to a metre in height and are thought to be among the earliest assortment of large, multicellular life.

Whether Ediacara represent the earliest animal lineages or an entirely extinct group of multicellular life is still a mystery, and an active research direction for Laflamme.

Laflamme and his colleagues suggest large Ediacara were able to absorb nutrients in higher quantities, which in turn helped to fuel the high energy costs associated with increased size.

The study also suggests that large Ediacara altered the flow of surrounding ocean currents, thus promoting further growth.

Laflamme said the results of the study may help to explain how relatively large multicellular organisms were able to compete against smaller, more-efficient bacterial films.

"Science has always had a difficult time explaining how and why the earliest forms of multicellular life got big," Laflamme said.

"This research helps to explain how we moved from a world ruled by microscopic bacteria to our world today where animals and plants dominate.

"The new methods used in our research may also help to explain how multicellular life competed during the Cambrian explosion of complex animals."


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marco Ghisalberti, David A. Gold, Marc Laflamme, Matthew E. Clapham, Guy M. Narbonne, Roger E. Summons, David T. Johnston, David K. Jacobs. Canopy Flow Analysis Reveals the Advantage of Size in the Oldest Communities of Multicellular Eukaryotes. Current Biology, 2014; DOI: 10.1016/j.cub.2013.12.017

Cite This Page:

University of Toronto. "Large and in charge: Study shows size matters in prehistoric seas." ScienceDaily. ScienceDaily, 23 January 2014. <www.sciencedaily.com/releases/2014/01/140123125536.htm>.
University of Toronto. (2014, January 23). Large and in charge: Study shows size matters in prehistoric seas. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2014/01/140123125536.htm
University of Toronto. "Large and in charge: Study shows size matters in prehistoric seas." ScienceDaily. www.sciencedaily.com/releases/2014/01/140123125536.htm (accessed August 22, 2014).

Share This




More Fossils & Ruins News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Neanderthals Probably Died Out Earlier Than We Thought

Neanderthals Probably Died Out Earlier Than We Thought

Newsy (Aug. 21, 2014) — A new study is packed with interesting Neanderthal-related findings, including a "definitive answer" to when they went extinct. Video provided by Newsy
Powered by NewsLook.com
Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) — Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
Mother And Son Find Woolly Mammoth Tusks 22 Years Apart

Mother And Son Find Woolly Mammoth Tusks 22 Years Apart

Newsy (Aug. 15, 2014) — A mother and son in Alaska uncovered woolly mammoth tusks in the same river more than two decades apart. Video provided by Newsy
Powered by NewsLook.com
Fossils Reveal Ancient Flying Reptile With 'Butterfly Head'

Fossils Reveal Ancient Flying Reptile With 'Butterfly Head'

Newsy (Aug. 14, 2014) — Newly found fossils reveal a previously unknown species of flying reptile with a really weird head, which some say looks like a butterfly. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins