Featured Research

from universities, journals, and other organizations

The shape of infectious prions

Date:
January 24, 2014
Source:
Sissa Medialab
Summary:
Prions are unique infective agents -- unlike viruses, bacteria, fungi and other parasites, prions do not contain either DNA or RNA. Despite their seemingly simple structure, they can propagate their pathological effects like wildfire, by "infecting" normal proteins. PrPSc (the pathological form of the prion protein) can induce normal prion proteins (PrPC) to acquire the wrong conformation and convert into further disease-causing agents.

Structural changes were located in the prion protein N-terminus, where a novel reorganization of the beta sheet (in yellow) was observed. In the background, the X-ray diffraction pattern of the crystal composed by the complex prion protein-Nanoboy.
Credit: SISSA

Prions are unique infective agents -- unlike viruses, bacteria, fungi and other parasites, prions do not contain either DNA or RNA. Despite their seemingly simple structure, they can propagate their pathological effects like wildfire, by "infecting" normal proteins. PrPSc (the pathological form of the prion protein) can induce normal prion proteins (PrPC) to acquire the wrong conformation and convert into further disease-causing agents.

Related Articles


"When they are healthy, they look like tiny spheres; when they are malignant, they appear as cubes" stated Giuseppe Legname, principal investigator of the Prion Biology Laboratory at the Scuola Internazionale Superiore di Studi Avanzati (SISSA) in Trieste, when describing prion proteins. Prions are "misfolded" proteins that cause a group of incurable neurodegenerative diseases, including spongiform encephalopathies (for example, mad cow diseases) and Creutzfeldt-Jakob disease. Legname and coworkers have recently published a detailed analysis of the early mechanisms of misfolding. Their research has just been published in the Journal of the American Chemical Society, the most authoritative scientific journal in the field.

"For the first time, our experimental study has investigated the structural elements leading to the disease-causing conversion" explains Legname. "With the help of X-rays, we observed some synthetic prion proteins engineered in our lab by applying a new approach -- we used nanobodies, i.e. small proteins that act as a scaffolding and induce prions to stabilize their structure." Legname and colleagues reported that misfolding originates in a specific part of the protein named "N-terminal." "The prion protein consists of two subunits. The C-terminal has a clearly defined and well-known structure, whereas the unstructured N-terminal is disordered, and still largely unknown. This is the very area where the early prion pathological misfolding occurs" adds Legname. "The looser conformation of the N-terminal likely determines a dynamic structure, which can thus change the protein shape."

"Works like ours are the first, important steps to understand the mechanisms underlying the pathogenic effect of prions" concludes Legname. "Elucidating the misfolding process is essential to the future development of drugs and therapeutic strategies against incurable neurodegenerative diseases."


Story Source:

The above story is based on materials provided by Sissa Medialab. Note: Materials may be edited for content and length.


Journal Reference:

  1. Romany N. N. Abskharon, Gabriele Giachin, Alexandre Wohlkonig, Sameh H. Soror, Els Pardon, Giuseppe Legname, Jan Steyaert. Probing the N-Terminal β-Sheet Conversion in the Crystal Structure of the Human Prion Protein Bound to a Nanobody. Journal of the American Chemical Society, 2014; 136 (3): 937 DOI: 10.1021/ja407527p

Cite This Page:

Sissa Medialab. "The shape of infectious prions." ScienceDaily. ScienceDaily, 24 January 2014. <www.sciencedaily.com/releases/2014/01/140124082602.htm>.
Sissa Medialab. (2014, January 24). The shape of infectious prions. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2014/01/140124082602.htm
Sissa Medialab. "The shape of infectious prions." ScienceDaily. www.sciencedaily.com/releases/2014/01/140124082602.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins