Featured Research

from universities, journals, and other organizations

Sociable receptors: Cells take clues from other cells to direct behavior

Date:
February 5, 2014
Source:
Max-Planck-Gesellschaft
Summary:
When cells migrate in the body, for instance, during development, or when neurons establish new connections, cells need to know where they are going. A 'wrong turn' will generally cause disease or developmental disorders. The cells take direction cues from other cells with which they interact, and which they then repel after a short period of contact. Among those direction cues are ephrin ligands, recognized by Eph receptors on the cell. Scientists have discovered that Eph receptors must form groups of three or four in order to become active and transmit the signal.

Countless Eph receptors (green) can be found on the surface of this neuron. When they are artificially induced to form groups, the nerve process, or axon (red tip), withdraws.
Credit: © MPI of Neurobiology / Dudanova

When cells migrate in the body, for instance, during development, or when neurons establish new connections, cells need to know where they are going. A 'wrong turn' will generally cause disease or developmental disorders. The cells take direction cues from other cells with which they interact, and which they then repel after a short period of contact. Among those direction cues are ephrin ligands, recognized by Eph receptors on the cell.

Related Articles


Together with colleagues from the Max Planck Institute of Molecular Physiology in Dortmund, scientists at the Max Planck Institute of Neurobiology in Martinsried have discovered that Eph receptors must form groups of three or four in order to become active and transmit the signal. Furthermore, the ratio of such multimers to inactive dimers determines the strength of the cellular repulsion response. The new findings help scientists understand how cells communicate and offer a point of departure for studying diseases related to breakdowns in this guidance system.

When people get together, there is usually a lot of interaction. Our cells behave similarly. When cells grow close to each other during development, they need to communicate with the surrounding cells to establish whether they are in the right place in the organism and which cells they should connect with. This communication is especially critical in the brain, where adhesion and repulsion processes between neurons occur continuously. It is only when the right cells connect that something new can be learned, for example. Emerging tumors also must exchange information with the cells around them to be able to grow. "It is of fundamental importance to understand how cells communicate with one another," says Rüdiger Klein, Director at the Max Planck Institute of Neurobiology. He has been studying the language of the cells for years together with colleagues in his department. Their research focuses on the so-called Eph receptors and their ephrin ligands.

Cell communication via ephrin/Eph receptors comes into play in most encounters between cells. As a result of this communication, one cell usually repels the other, which continues to grow in another direction. Many such instances of interaction guide the cell to the right place. The guidance system itself -- the ephrins and Eph receptors -- are found on the cell surface. When the ephrin and the Eph receptor of two opposing cells meet, they form an ephrin/Eph complex. This triggers cellular processes in one or both of the cells, which eventually cause the detachment of the ephrin/Eph complex and the repulsion of the two cells from one another.

"Many receptor systems have developed a security mechanism to prevent false alarms from triggering the cellular processes," explains Rüdiger Klein. "A signal is only transmitted to the cell if two receptor/ligand pairs form a dimer." However, in the case of ephrins and Eph receptors, things are different. Ephrin/Eph complexes form dimers, but often also larger groups on the cell membranes. Scientists were previously not sure how this affects repulsion and repulsive signalling strength.

The neurobiologists in Martinsried and their colleagues from the Max Planck Institute of Molecular Physiology in Dortmund have now been able to artificially trigger and study the formation of groups of Eph receptors in cell culture. The results show that the otherwise usual dimers are inactive when made up of Eph receptors. Only trimers and tetramers triggered the signals that caused cell repulsion. However, the scientists' working hypothesis that a larger group would trigger a stronger signal turned out to be too simple. "It took us quite some time to figure out the system," says Andreas Schaupp, first author of the study. "In fact, it is not the size of each individual group that matters, but the composition of the entire population of groups."

The more trimers and tetramers and the fewer dimers present in the cell membrane, the stronger the repulsion signal. In contrast, a higher abundance of dimers and a smaller number of multimers produce a weaker reaction or none at all. "Thanks to this mechanism, a cell can grade its response from forcing another cell to make a U-turn to simply guiding it past at close range," Rüdiger Klein says. This is an important step in understanding how migrating and growing cells navigate, and why this guidance system breaks down in some diseases.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Sociable receptors: Cells take clues from other cells to direct behavior." ScienceDaily. ScienceDaily, 5 February 2014. <www.sciencedaily.com/releases/2014/02/140205103651.htm>.
Max-Planck-Gesellschaft. (2014, February 5). Sociable receptors: Cells take clues from other cells to direct behavior. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/02/140205103651.htm
Max-Planck-Gesellschaft. "Sociable receptors: Cells take clues from other cells to direct behavior." ScienceDaily. www.sciencedaily.com/releases/2014/02/140205103651.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins