Featured Research

from universities, journals, and other organizations

Avoiding environmental hazards: Lessons from a tiny worm

Date:
March 18, 2014
Source:
Okinawa Institute of Science and Technology - OIST
Summary:
In order to survive, animals must be able to sense what is happening in the environment. Some animals have excellent sight, others a great sense of smell or taste.The senses are used to find food, mates, to avoid toxins and predators. The small wormC. eleganshas a set of sensory neurons that detect various conditions in its environment, almost like a sense of smell. It is an ideal organism for studying how animals interact with their environment because its sensing systems and reactions are simple and can be understood at a genetic level.

C. elegans with a green fluorescent protein (GFP) marker in the ASH neuron, the neuron that senses high pH.
Credit: Image courtesy of Okinawa Institute of Science and Technology - OIST

In order to survive, animals must be able to sense what is happening in the environment. Some animals have excellent sight, others a great sense of smell or taste. The senses are used to find food, mates, to avoid toxins and predators. The small worm C. elegans has a set of sensory neurons that detect various conditions in its environment, almost like a sense of smell. It is an ideal organism for studying how animals interact with their environment because its sensing systems and reactions are simple and can be understood at a genetic level.

Related Articles


Members of OIST's Information Processing Biology Unit, led by Prof. Ichiro Maruyama, have recently uncovered the sensor for alkaline environments, or high pH, in C. elegans.

The paper was chosen as a Plenary Article by the editors of Neuroscience Letters because of, "especially meritorious work," according to the Editor-in-Chief, Dr. Stephen Waxman. Dr. Waxman says editors recommended the article because "outside experts called the work an interesting set of experiments that provides insights into how high pH is detected as a repellent stimulus by the sensory system."

pH is an important condition to sense because a pH too high or too low can cause harm to an organism. A low pH indicates acidity, and a high pH indicates alkalinity. Substances either too low or too high in pH can, in extreme cases, cause extensive tissue damage or death. Even small fluctuations can cause harm. In humans, a difference of only 0.2 pH units in the blood can lead to extreme health problems. Normally, the body's ability to sense pH prevents a serious problem from arising, but if these sensors are not functioning properly, or the body does not react appropriately, the results could be catastrophic.

In the tiny worm C. elegans, the researchers have taken advantage of the simple way the worm can sense alkalinity, or high pH, in its environment. In a previous paper, the group showed that worms prefer a slightly alkaline environment. Here, they demonstrate that the worms are averse to a very high pH by showing that the worms avoided areas of the experimental environment where the researchers created highly alkaline conditions. The researchers also identified the specific neuron responsible for detecting high pH. They did this by showing that when a specific sensing neuron, called the ASH neuron, was destroyed by laser microsurgery, the worms no longer avoided high pH. Going another step further, the researchers also identified some of the proteins involved in the response to high alkalinity, which make up a calcium channel. Using one of the great advantages of C. elegans, they were able to visualize the influx of calcium that occurred in a neuron in response to stimulus in a living worm. When the two proteins that form the calcium channels were mutated, the neuron was no longer activated.

The next goal for the researchers is to identify other key players involved in the response to alkaline environments. Toshihiro Sassa and Takashi Murayama, the first and second authors of the paper, respectively, say, "we would like to identify the other genes involved in downstream signaling from this calcium channel to understand how the signal leads to aversion to high pH." Sensing alkaline environments is only the first step; the worm must then quickly react to the stimulus by moving away. The researchers would like to understand the genes and neuronal networks involved in regulating the avoidance behavior that occurs after high pH is sensed. The ability to study such complex neurological responses in a simple animal like the worm helps scientists understand the more complex systems that exist in humans. It seems like Friedrich Nietzsche had it right when he said, "You have made your way from worm to man, and much in you is still worm."


Story Source:

The above story is based on materials provided by Okinawa Institute of Science and Technology - OIST. Note: Materials may be edited for content and length.


Journal Reference:

  1. Toshihiro Sassa, Takashi Murayama, Ichi N. Maruyama. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neuroscience Letters, 2013; 555: 248 DOI: 10.1016/j.neulet.2013.06.001

Cite This Page:

Okinawa Institute of Science and Technology - OIST. "Avoiding environmental hazards: Lessons from a tiny worm." ScienceDaily. ScienceDaily, 18 March 2014. <www.sciencedaily.com/releases/2014/03/140318093218.htm>.
Okinawa Institute of Science and Technology - OIST. (2014, March 18). Avoiding environmental hazards: Lessons from a tiny worm. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/03/140318093218.htm
Okinawa Institute of Science and Technology - OIST. "Avoiding environmental hazards: Lessons from a tiny worm." ScienceDaily. www.sciencedaily.com/releases/2014/03/140318093218.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins