Featured Research

from universities, journals, and other organizations

Genetic evidence for single bacteria cause of sepsis identified for the first time by academic team

Date:
March 21, 2014
Source:
University of Leicester
Summary:
An international team of academics has studied how localized infections can turn into the dangerous systematic disease sepsis – and has identified for the first time through genetic evidence that a single bacteria could be the cause. The study examined the events that lead to sepsis by Streptococcus pneumoniae (pneumococcus), a major human pathogen, in mice. They found that in most cases the bacteria causing sepsis was started by a single pneumococcal cell.

An international team of academics, including Professor Marco Oggioni from the University of Leicester's Department of Genetics, has studied how localized infections can turn into the dangerous systematic disease sepsis -- and has identified for the first time through genetic evidence that a single bacteria could be the cause.

The study, which has been published in the academic journal PLOS Pathogens, examined the events that lead to sepsis by Streptococcus pneumoniae (pneumococcus), a major human pathogen, in mice. They found that in most cases the bacteria causing sepsis was started by a single pneumococcal cell.

The study was an interdisciplinary collaboration between the Departments of Genetics, Infection Immunity and Inflammation and Mathematics at the University of Leicester, Professor Richard Moxon at the University of Oxford and scientists from overseas including the University of Siena.

Professor Oggioni said: "Our data in experimental infection models indicate that we do not need only strategies which target many bacteria when it is too late, but that early intervention schemes which prevent the one-single cell that starts the disease process might provide substantial benefit to the patient.

"In this work we have for the first time provided genetic evidence for a single cell origin of bacterial invasive infection. The scenario was hypothesized over 50 years ago, but so far only phenotypic and statistical evidence could be obtained for this event."

Under normal circumstances, when different bacteria are used in models of experimental infection of hosts who have not previously encountered the same pathogen, the vast majority is destroyed rapidly by the host's innate immune system.

In the researcher's model, a dose of one million bacteria is needed to induce systemic disease in about half of the hosts in the study.

This is in stark contrast to a much lower number of bacteria thought to make up the starting "seed" that leads to the development of systemic infection -- and the assumption is that there must be one or more "bottlenecks" in the development of the disease.

To investigate these bottlenecks, the researchers injected mice with a mix of three different variants of S. pneumoniae. About half of the mice developed sepsis and in almost all cases the bacteria causing sepsis were derived from only one of the three variants used in the initial challenge.

Using statistical analysis as well as direct DNA sequencing, the researchers could show that in most cases the bacterial population causing sepsis was started by a single pneumococcal cell.

When the researchers looked closer at how the immune system resists most injected bacteria, they found that macrophages, a type of immune cell that can gobble up bacteria, and specifically macrophages in the spleen, are the main contributors to an efficient immune response to this pathogen.

Their findings suggest that if bacteria survive this initial counter-attack, a single 'founder' bacterium multiplies and re-enters the bloodstream, where its descendants come under strong selective pressure that dynamically shapes the subsequent bacterial population -- resulting in the sepsis.

The data also suggests that the single bacterium leading to sepsis has no obvious characteristics that give it an advantage over the 999,999 others, but that random events determine which of the injected bacteria survives and multiplies to cause disease.

It is believed that the findings, suggesting that the development of sepsis starting from a single founding cell which survives the immune system's initial counter-attack in mice, could also potentially apply to human systemic infections.

This information could prove vital to understanding sepsis, as the causes of the disease are still largely unknown to the scientific community.

Dr Oggioni added: "Knowing that there is a moment when a single bacterial cell escapes "normal" immune surveillance at the beginning of each invasive infection is an important paradigm and essential information which, in our opinion, should lead to changes in therapeutic protocols in order to maximise success of treatment outcome."


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alice Gerlini, Leonarda Colomba, Leonardo Furi, Tiziana Braccini, Ana Sousa Manso, Andrea Pammolli, Bo Wang, Antonio Vivi, Maria Tassini, Nico van Rooijen, Gianni Pozzi, Susanna Ricci, Peter W. Andrew, Uwe Koedel, E. Richard Moxon, Marco R. Oggioni. The Role of Host and Microbial Factors in the Pathogenesis of Pneumococcal Bacteraemia Arising from a Single Bacterial Cell Bottleneck. PLoS Pathogens, 2014; 10 (3): e1004026 DOI: 10.1371/journal.ppat.1004026

Cite This Page:

University of Leicester. "Genetic evidence for single bacteria cause of sepsis identified for the first time by academic team." ScienceDaily. ScienceDaily, 21 March 2014. <www.sciencedaily.com/releases/2014/03/140321094859.htm>.
University of Leicester. (2014, March 21). Genetic evidence for single bacteria cause of sepsis identified for the first time by academic team. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/03/140321094859.htm
University of Leicester. "Genetic evidence for single bacteria cause of sepsis identified for the first time by academic team." ScienceDaily. www.sciencedaily.com/releases/2014/03/140321094859.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
Captive Dolphin Gives Birth

Captive Dolphin Gives Birth

Reuters - Light News Video Online (Oct. 20, 2014) SeaWorld in San Diego welcomes a new bottlenose dolphin, the second calf for 13-year-old female, Sadie. Rough Cut. (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins