Featured Research

from universities, journals, and other organizations

Tiny wireless sensing device alerts users to telltale vapors remotely

Date:
April 3, 2014
Source:
Georgia Institute of Technology
Summary:
Researchers have developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere. The technology, which could be manufactured using familiar aerosol-jet printing techniques, is aimed at myriad applications in military, commercial, environmental, healthcare and other areas.

Georgia Tech Research Institute researcher Xiaojuan (Judy) Song examines a functionalized nanomaterial-based sensor used to detect chemical vapors. This sensor integrates with a 5.8 GHz RFID tag and digitally communicates information back to the reader.
Credit: Georgia Tech Photo: Rob Felt

A research team at the Georgia Tech Research Institute (GTRI) has developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere. The technology, which could be manufactured using familiar aerosol-jet printing techniques, is aimed at myriad applications in military, commercial, environmental, healthcare and other areas.

The current design integrates nanotechnology and radio-frequency identification (RFID) capabilities into a small working prototype. An array of sensors uses carbon nanotubes and other nanomaterials to detect specific chemicals, while an RFID integrated circuit informs users about the presence and concentrations of those vapors at a safe distance wirelessly.

Because it is based on programmable digital technology, the RFID component can provide greater security, reliability and range -- and much smaller size -- than earlier sensor designs based on non-programmable analog technology. The present GTRI prototype is 10 centimeters square, but further designs are expected to squeeze a multiple-sensor array and an RFID chip into a one-millimeter-square device printable on paper or on flexible, durable substrates such as liquid crystal polymer.

"Production of these devices promises to become so inexpensive that they could be used by the thousands in the field to look for telltale chemicals such as ammonia, which is associated with explosives," said Xiaojuan (Judy) Song, a GTRI senior research scientist who is principal investigator on the project. "This remote capability would inform soldiers or first responders about numerous hazards before they encountered them."

Wireless sensors could also be valuable for identifying and understanding air pollution, she said. Inexpensive sensors that detect ammonia and nitrogen oxides (NOx) could be fielded in large numbers, giving scientists increased knowledge of the location and intensity of pollutants.

The availability of such chips might also help companies detect food spoilage. And healthcare facilities could benefit, as the presence of telltale chemicals informed caregivers of patient conditions and needs.

The present prototype contains three sensors along with an RFID chip. Future devices for field use might contain a much larger number of sensors based on various nanomaterials -- including carbon nanotubes, graphene and molybdenum disulfide -- depending on the types of chemicals to be detected.

"In general, having an extensive sensing array is the best approach," Song said. "For real-world applications, a variety of sensors offers better functionality, because they can work together to produce a more detailed and reliable picture of the chemical environment."

The RFID component in the GTRI device makes use of the 5.8 gigahertz (GHz) radio frequency, one of several radio bands reserved for industrial, scientific and medical (ISM) purposes. The GTRI component is believed to be the first RFID system that exploits this frequency.

The advantage of 5.8 GHz technology is that it will let RFID tags be made extremely small -- in the area of one centimeter square, said Christopher Valenta, a GTRI research engineer who is co-principal investigator on the project. He explained that the digital transmission of data from RFID-based sensors does a much better job than earlier analog techniques based on interpretation of radio-frequency waveforms.

Specifically, digital signaling with 5.8 GHz RFID offers:

• Greater security due to digital techniques that prevent unauthorized access to the wireless data stream; • Increased resistance to interference from materials such as metals that can cause false readings; • Digital-logic readings of chemical concentrations that are more precise and easier to interpret than analog approaches; • Longer-range communication capability.

The GTRI team is currently gearing up to design a very small, 5.8 GHz RFID component. After fabrication and testing, the chip could be manufactured in large numbers inexpensively.

"It might take $400,000 to design and fabricate that first RFID chip, but all the subsequent copies might cost only a few pennies," said Valenta, who is a Ph.D. candidate in the School of Electrical and Computer Engineering.

The GTRI team successfully tested its prototype sensing system in a demonstration designed to resemble an airport checkpoint. The sensor array detected the targeted chemical despite emersion in a complex chemical environment, and the RFID component was able to transmit the sensors' readings.

The present GTRI prototype is semi-passive, so it requires power from an incoming signal beam in order to send data back to a remote reading device. However, future sensing devices might exploit ambient energy from solar or vibrational sources that would let them work at longer ranges with greater sensitivity.

The team is continuing to work on the important task of developing pattern recognition software that will support effective functioning of the sensor array.

"The prototype 5.8 GHz wireless sensing system promises to be flexible and highly scalable," Valenta said. "An advanced design might include an array of 10 or more different sensors, with electronics that could utilize those sensors to perform 25 different jobs, and yet still be tiny, robust and inexpensive."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. The original article was written by Rick Robinson. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Tiny wireless sensing device alerts users to telltale vapors remotely." ScienceDaily. ScienceDaily, 3 April 2014. <www.sciencedaily.com/releases/2014/04/140403131944.htm>.
Georgia Institute of Technology. (2014, April 3). Tiny wireless sensing device alerts users to telltale vapors remotely. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/04/140403131944.htm
Georgia Institute of Technology. "Tiny wireless sensing device alerts users to telltale vapors remotely." ScienceDaily. www.sciencedaily.com/releases/2014/04/140403131944.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Halliburton Reaches $1B Gulf Spill Settlement

Halliburton Reaches $1B Gulf Spill Settlement

AP (Sep. 2, 2014) Halliburton's agreement to pay more than $1 billion to settle numerous claims involving the 2010 BP oil spill could be a way to diminish years of costly litigation. A federal judge still has to approve the settlement. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins