Featured Research

from universities, journals, and other organizations

Light-activated neurons from stem cells restore function to paralyzed muscles

Date:
April 4, 2014
Source:
University College London
Summary:
A new way to artificially control muscles using light, with the potential to restore function to muscles paralyzed by conditions such as motor neuron disease and spinal cord injury, has been developed by scientists. The technique involves transplanting specially-designed motor neurons created from stem cells into injured nerve branches. These motor neurons are designed to react to pulses of blue light, allowing scientists to fine-tune muscle control by adjusting the intensity, duration and frequency of the light pulses.

The technique involves transplanting specially-designed motor neurons created from stem cells into injured nerve branches. These motor neurons are designed to react to pulses of blue light, allowing scientists to fine-tune muscle control by adjusting the intensity, duration and frequency of the light pulses.
Credit: Barney Bryson

A new way to artificially control muscles using light, with the potential to restore function to muscles paralyzed by conditions such as motor neuron disease and spinal cord injury, has been developed by scientists at UCL and King's College London.

The technique involves transplanting specially-designed motor neurons created from stem cells into injured nerve branches. These motor neurons are designed to react to pulses of blue light, allowing scientists to fine-tune muscle control by adjusting the intensity, duration and frequency of the light pulses.

In the study, published this week in Science, the team demonstrated the method in mice in which the nerves that supply muscles in the hind legs were injured. They showed that the transplanted stem cell-derived motor neurons grew along the injured nerves to connect successfully with the paralyzed muscles, which could then be controlled by pulses of blue light.

"Following the new procedure, we saw previously paralyzed leg muscles start to function," says Professor Linda Greensmith of the MRC Centre for Neuromuscular Diseases at UCL's Institute of Neurology, who co-led the study. "This strategy has significant advantages over existing techniques that use electricity to stimulate nerves, which can be painful and often results in rapid muscle fatigue. Moreover, if the existing motor neurons are lost due to injury or disease, electrical stimulation of nerves is rendered useless as these too are lost."

Muscles are normally controlled by motor neurons, specialized nerve cells within the brain and spinal cord. These neurons relay signals from the brain to muscles to bring about motor functions such as walking, standing and even breathing. However, motor neurons can become damaged in motor neuron disease or following spinal cord injuries, causing permanent loss of muscle function resulting in paralysis

"This new technique represents a means to restore the function of specific muscles following paralysing neurological injuries or disease," explains Professor Greensmith. "Within the next five years or so, we hope to undertake the steps that are necessary to take this ground-breaking approach into human trials, potentially to develop treatments for patients with motor neuron disease, many of whom eventually lose the ability to breathe, as their diaphragm muscles gradually become paralyzed. We eventually hope to use our method to create a sort of optical pacemaker for the diaphragm to keep these patients breathing."

The light-responsive motor neurons that made the technique possible were created from stem cells by Dr Ivo Lieberam of the MRC Centre for Developmental Neurobiology, King's College London.

"We custom-tailored embryonic stem cells so that motor neurons derived from them can function as part of the muscle pacemaker device." says Dr Lieberam, who co-led the study. "First, we equipped the cells with a molecular light sensor. This enables us to control motor neurons with blue light flashes. We then built a survival gene into them, which helps the stem-cell motor neurons to stay alive when they are transplanted inside the injured nerve and allows them to grow to connect to muscle."


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. B. Bryson, C. B. Machado, M. Crossley, D. Stevenson, V. Bros-Facer, J. Burrone, L. Greensmith, I. Lieberam. Optical Control of Muscle Function by Transplantation of Stem Cell-Derived Motor Neurons in Mice. Science, 2014; 344 (6179): 94 DOI: 10.1126/science.1248523

Cite This Page:

University College London. "Light-activated neurons from stem cells restore function to paralyzed muscles." ScienceDaily. ScienceDaily, 4 April 2014. <www.sciencedaily.com/releases/2014/04/140404140303.htm>.
University College London. (2014, April 4). Light-activated neurons from stem cells restore function to paralyzed muscles. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/04/140404140303.htm
University College London. "Light-activated neurons from stem cells restore function to paralyzed muscles." ScienceDaily. www.sciencedaily.com/releases/2014/04/140404140303.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins