Featured Research

from universities, journals, and other organizations

Faithful allies since the Cretaceous: Symbiosis between beewolves and protective bacteria originated millions of years ago

Date:
April 14, 2014
Source:
Max Planck Institute for Chemical Ecology
Summary:
Scientists have discovered that certain wasps tightly control mother-to-offspring transmission of their bacterial symbionts. This stabilizes the symbiotic alliance and contributed to its persistence over the past 68-110 million years.

This is a male beewolf (Philanthus pulcherrimus) on a perch in its territory. Three genera of these digger wasps cultivate antibiotic-producing Streptomyces bacteria that protect the wasp larvae from detrimental fungi.
Credit: Martin Kaltenpoth, Max Planck Institute for Chemical Ecology, Jena, Germany

Like humans, many animals depend on beneficial microbes for survival. Although such symbioses can persist for millions of years, the factors maintaining their long-term stability remain, in most cases, unknown. Scientists from the Max Planck Institute for Chemical Ecology and the University of Regensburg, in collaboration with researchers in the USA, now discovered that certain wasps tightly control mother-to-offspring transmission of their bacterial symbionts. This stabilizes the symbiotic alliance and contributed to its persistence over the past 68-110 million years.

Symbiotic associations are ubiquitous in nature and play a pivotal role for the ecology and evolution of most organisms on earth. This is exemplified by mykorrhizal fungi that are important nutritional partners for up to 90% of all land plants. Many symbioses have persisted for hundreds of millions of years, with a certain host species consistently associating with a specific symbiont. But how do these alliances persist? After all, many symbionts spend part of their life cycle outside of the host's body. In order to prevent the acquisition of ever-present environmental microbes, the host must discriminate between friends and foes.

A particularly fascinating defensive alliance occurs in the European beewolf (Philanthus triangulum), a digger wasp that hunts honeybees and provisions them for its offspring in underground nests. Previous research has shown that bacterial symbionts of the genus Streptomyces live in the wasp's antennae and on the larval cocoons. The bacteria produce a cocktail of nine different antibiotics that fend off detrimental fungi and bacteria from infecting the developing larva in the cocoon. This strategy to avoid infections is comparable to the combination prophylaxis used in human medicine.

The scientists now reconstructed the phylogenies of different beewolf species and their symbionts. An analysis of the beewolf phylogeny revealed that the symbiosis with Streptomyces first originated in the late Cretaceous, between 68 and 110 million years ago. At present, about 170 species of wasps live in symbiosis with the protective bacteria. The comparison of host and symbionts phylogenies yielded another surprising finding: The symbionts of all beewolf species are very closely related, but their phylogeny does not exactly reflect that of their hosts, although this would be expected in case of perfect transmission of symbionts from mother to its progeny. "This pattern indicates that while beewolves occasionally replace their bacteria, they always do so with the symbiont of another beewolf species" explains Martin Kaltenpoth. "Although free-living relatives of the symbiotic bacteria are very common in beewolf habitats, they are apparently not able to stably infect beewolves and replace the native symbionts."

To elucidate how beewolves maintain the association with their specific symbionts, the scientists generated symbiont-free beewolves and then infected them either with their native symbionts or with a related bacterium from the environment. Although both microbes grew in the wasps' antennae, only the native symbiont was successfully transferred to the offspring. "Preventing transmission of other -- possibly detrimental -- microbes might be important to avoid infection of the cocoon. At the same time, beewolves ensure that their offspring inherit the true defensive symbiont," concludes Erhard Strohm. The beewolves' strategy to transmit the appropriate symbionts provides a unique glimpse into how a symbiosis can remain stable over millions of years, and it helps explain the abundance and persistence of symbiotic associations in insects. In the future, the scientists hope to uncover the molecular basis of how beewolves manage to selectively prevent transmission of non-native bacteria.


Story Source:

The above story is based on materials provided by Max Planck Institute for Chemical Ecology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kaltenpoth, M., Roeser-Mueller, K., Koehler, S., Peterson, A., Nechitaylo, T., Stubblefield, J.W., Herzner, G., Seger, J. & Strohm, E. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proceedings of the National Academy of Sciences, 2014 DOI: 10.1073/pnas.1400457111

Cite This Page:

Max Planck Institute for Chemical Ecology. "Faithful allies since the Cretaceous: Symbiosis between beewolves and protective bacteria originated millions of years ago." ScienceDaily. ScienceDaily, 14 April 2014. <www.sciencedaily.com/releases/2014/04/140414154450.htm>.
Max Planck Institute for Chemical Ecology. (2014, April 14). Faithful allies since the Cretaceous: Symbiosis between beewolves and protective bacteria originated millions of years ago. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/04/140414154450.htm
Max Planck Institute for Chemical Ecology. "Faithful allies since the Cretaceous: Symbiosis between beewolves and protective bacteria originated millions of years ago." ScienceDaily. www.sciencedaily.com/releases/2014/04/140414154450.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins