Featured Research

from universities, journals, and other organizations

Pathogenic E. coli binds to fresh vegetables

Date:
April 15, 2014
Source:
Society for General Microbiology
Summary:
Between 20-30 percent of food-poisoning outbreaks linked to disease-causing strains of the bacterium Escherichia coli are caused by people eating contaminated vegetables. Research shows that the disease-causing E. coli O157:H7 interacts directly with plant cells allowing it to anchor to the surface of a plant, where it can multiply.

Food-poisoning outbreaks linked to disease-causing strains of the bacterium Escherichia coli are normally associated with tainted meat products. However, between 20-30% of these are caused by people eating contaminated vegetables, as was seen in the 2011 outbreak in Europe that caused 53 deaths. Research presented today at the Society for General Microbiology's Annual Meeting in Liverpool shows that the disease-causing E. coli O157:H7 interacts directly with plant cells, allowing it to anchor to the surface of a plant, where it can multiply.

Researchers from the James Hutton Institute in Scotland have identified that E. coli O157:H7 uses whip-link structures on its surface known as flagella -- typically used for bacterial motility -- to penetrate the plant cell walls. The team showed that purified flagella were able to directly interact with lipid molecules found in the membranes of plant cells. E. coli bacteria lacking flagella were unable to bind to the plant cells.

Once attached, the E. coli are able to grow on, and colonise, the surface of the plant. At this point, they can be removed by washing, although the researchers showed that a small number of bacteria are able to invade inside the plant, where they become protected from washing. The group have shown that E. coli O157:H7 is able to colonise the roots of both spinach and lettuce.

Dr Nicola Holden, who led the research, says: "This work shows the fine detail of how the bacteria bind to plants. We think this mechanism is common to many food-borne bacteria and shows that they can exploit common factors found in both plants and animals to help them grow. Our long term aim is to better understand these interactions so we can reduce the risk of food-borne disease."

The researchers believe that the E. coli O157:H7 bacteria use the same method of colonising the surface of plants as they do when colonising the intestines of animals. The work shows that these bacteria are not simply transported through the food chain in an inert manner, but are actively interacting with both plants and animals.

While outbreaks of vegetable-associated E. coli outbreaks are rare in the UK as a result of strict control measures at all stages of the food chain from plough to plate, they do still occur, as was seen in 2013 when contaminated watercress entered the food chain resulting in seven people being hospitalised. By understanding the mechanisms of how the bacteria interact with plants, the researchers are hoping to find targeted ways to stop the binding, reducing the risk of food contamination.


Story Source:

The above story is based on materials provided by Society for General Microbiology. Note: Materials may be edited for content and length.


Cite This Page:

Society for General Microbiology. "Pathogenic E. coli binds to fresh vegetables." ScienceDaily. ScienceDaily, 15 April 2014. <www.sciencedaily.com/releases/2014/04/140415203813.htm>.
Society for General Microbiology. (2014, April 15). Pathogenic E. coli binds to fresh vegetables. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2014/04/140415203813.htm
Society for General Microbiology. "Pathogenic E. coli binds to fresh vegetables." ScienceDaily. www.sciencedaily.com/releases/2014/04/140415203813.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins