Featured Research

from universities, journals, and other organizations

Theoretical biophysics: Adventurous bacteria decide how to preserve species?

Date:
April 16, 2014
Source:
Ludwig-Maximilians-Universität München
Summary:
To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists have now shown how these organisms should decide how best to preserve their species.

The bacterium Bacillus subtilis is quite adaptable. It moves about in liquids and on agar surfaces by means of flagella. Alternatively, it can stick to an underlying substrate. Actually, the bacteria proliferate most effectively in this stationary state, while motile bacteria reproduce at a notably lower rate.

Related Articles


In order to sustain and extend the colony, bacteria primarily require sufficient nutrients. Moving slowly would mean that nutrients are soon used up, but adventurous bacteria that decide to move out fast in search of the land of Cockaigne may end up feeling lonely.

"Should I stay or should I go?"

Which strategy offers the best prospects for the organisms? Should one specialize in growth or migration, or be a generalist and steer a balanced course? This is the question that has been addressed by theoretical biophysicists in LMU Professor Erwin Frey's group at the NIM (Nanosystems Initiative Munich). "We have developed a special mathematical model in which these strategies compete with each other," explains Matthias Reiter, first author of the study. "And this model enables us to prove that generalists are most successful."

Up to now such experiments have only been performed on homogeneous bacterial cultures consisting of genetically identical cells. The LMU theorists are the first to calculate the behavior of heterogeneous Bacillus subtilis populations. For this purpose, they assign a fixed migration rate to each bacterium, which is inherited by its progeny. This rate determines the proportion of time the organisms spend in a motile state, as opposed to being engaged in nutrient uptake and proliferation. In the simulated scenario, the bacteria are, for instance, seeded at the center of a plate containing nutrients. They gradually consume the nutrients available locally and are forced to colonize unpopulated territory.

Fighting for the best spots

The model reveals that, initially, there is intense competition for the limited resources at the edge of the occupied territory. During this phase, individuals that reproduce fast and occupy as much space as possible are at an advantage. But they are soon superseded by colonies of generalists, which devote equal time to migration and proliferation. These gradually spread out, forming sectors.

The Munich theorists explain this behavior in terms of the invasion speed of so-called Fisher fronts. This speed is maximal in the case of a balance between growth and motility. Initially, colonies that steer a middle course form individual sectors, until they eventually occupy the entire invasion front.

"We intend to test our findings experimentally in cooperation with biologists, in order to compare our theory with experimental work," Erwin Frey says. "It would even be possible to extend the model to more complex ecosystems, since it can, in principle, be transferred to all range-expansion phenomena in which growth and motility are complementary skills."


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universität München. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthias Reiter, Steffen Rulands, Erwin Frey. Range Expansion of Heterogeneous Populations. Physical Review Letters, 2014; 112 (14) DOI: 10.1103/PhysRevLett.112.148103

Cite This Page:

Ludwig-Maximilians-Universität München. "Theoretical biophysics: Adventurous bacteria decide how to preserve species?." ScienceDaily. ScienceDaily, 16 April 2014. <www.sciencedaily.com/releases/2014/04/140416143307.htm>.
Ludwig-Maximilians-Universität München. (2014, April 16). Theoretical biophysics: Adventurous bacteria decide how to preserve species?. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/04/140416143307.htm
Ludwig-Maximilians-Universität München. "Theoretical biophysics: Adventurous bacteria decide how to preserve species?." ScienceDaily. www.sciencedaily.com/releases/2014/04/140416143307.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins