Featured Research

from universities, journals, and other organizations

Dual role: Key cell division proteins also power up mitochondria

Date:
April 17, 2014
Source:
UC Davis Comprehensive Cancer Center
Summary:
The cyclin B1/Cdk1 protein complex, which plays a key role in cell division, also boosts the mitochondrial activity to power that process, research has shown. This is the first time the complex has been shown to perform both jobs. This newfound ability could make cyclin B1/Cdk1 an excellent target to control cellular energy production, potentially advancing cancer care and regenerative medicine.

“These proteins not only control the cell cycle, but they also moonlight to increase mitochondrial energy,” said lead author Jian Jian Li, director of Translational Research at the UC Davis Comprehensive Cancer Center and professor in the Department of Radiation Oncology.
Credit: Image courtesy of UC Davis Comprehensive Cancer Center

An international team led by researchers at UC Davis has shown that the cyclin B1/Cdk1 protein complex, which plays a key role in cell division, also boosts the mitochondrial activity to power that process. This is the first time the complex has been shown to perform both jobs. This newfound ability could make cyclin B1/Cdk1 an excellent target to control cellular energy production, potentially advancing cancer care and regenerative medicine. The research was published online today in the journal Developmental Cell.

Related Articles


"These proteins not only control the cell cycle, but they also moonlight to increase mitochondrial energy," said lead author Jian Jian Li, director of Translational Research at the UC Davis Comprehensive Cancer Center and professor in the Department of Radiation Oncology. "They synchronize these processes because the cell cycle cannot proceed without the extra energy."

The cyclin B1/Cdk1 complex has long been known to intervene at a critical point in the cell cycle, the G2 phase, during which cell division pauses after DNA replication to check for genetic damage. Once any damage has been repaired, the cell can move into mitosis (M) and begin dividing.

However, in addition to moving the cell cycle into mitosis, cyclin B1/Cdk1 also travels outside the nucleus to mitochondria -- the cell's power plants -- to boost energy production when the cell needs it most. Specifically, cyclin B1/Cdk1 phosphorylates (transfers energy to) a group of mitochondrial proteins (called complex I), increasing the organelles' ability to produce ATP, which powers most cellular activities. This coordination ensures the cell has enough energy to divide.

The team used both mouse and human cells, including breast cancer cells and normal human breast epithelial cells, to assess how cyclin B1/Cdk1controls mitochondrial energy metabolism during cell cycle G2/M progression. They found that increased mitochondrial protein phosphorylation by the cyclin B1/Cdk1 complex boosted energy production, while reversing that process reduced energy.

This is the first evidence that cyclin B1/Cdk1both senses the cell's energy needs during the G2/M transition and communicates that information to mitochondria. This mechanism could be an appealing therapeutic target for cancer.

"Under stress from radiation or chemotherapy, tumor cells may need mitochondria to provide extra energy to repair DNA damage," said Li. "If we block this communication between nucleus and mitochondria in tumor cells and inhibit glycolysis (directly converting glucose into cellular energy, the major cellular fuel for cancer cells), this could be a new approach to treating cancer."

In addition to making radiation and chemotherapy more effective, modulating cellular energy could potentially be used to control tumor growth.

"Like cars, tumors need a lot of gas," said Li. "If we reduce the amount of gas, we could perhaps slow down the cancer."

While inhibiting mitochondrial energy production could control tumors, boosting this process could help regenerative cells in normal tissues, such as muscle stem cells, repair damaged tissue, opening an entirely different therapeutic window.

Ironically, this newly discovered cellular mechanism could also boost communication between scientists, as this research unites two disciplines that had previously been separate: cell cycle and mitochondrial studies.

"A lot of people are working in mitochondria, and many more study the cell cycle, but few are studying the relationship between them," said Li. "In this paper, we show cross-talk between the nucleus and mitochondria. Now, perhaps, we can get similar cross-talk among experts between these two areas of study."


Story Source:

The above story is based on materials provided by UC Davis Comprehensive Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhaoqing Wang, Ming Fan, Demet Candas, Tie-Qiao Zhang, Lili Qin, Angela Eldridge, Sebastian Wachsmann-Hogiu, KaziM. Ahmed, BrettA. Chromy, Danupon Nantajit, Nadire Duru, Fuchu He, Min Chen, Toren Finkel, LeeS. Weinstein, JianJian Li. Cyclin B1/Cdk1 Coordinates Mitochondrial Respiration for Cell-Cycle G2/M Progression. Developmental Cell, 2014; DOI: 10.1016/j.devcel.2014.03.012

Cite This Page:

UC Davis Comprehensive Cancer Center. "Dual role: Key cell division proteins also power up mitochondria." ScienceDaily. ScienceDaily, 17 April 2014. <www.sciencedaily.com/releases/2014/04/140417124110.htm>.
UC Davis Comprehensive Cancer Center. (2014, April 17). Dual role: Key cell division proteins also power up mitochondria. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/04/140417124110.htm
UC Davis Comprehensive Cancer Center. "Dual role: Key cell division proteins also power up mitochondria." ScienceDaily. www.sciencedaily.com/releases/2014/04/140417124110.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins