Featured Research

from universities, journals, and other organizations

Connecting sleep deficits among young fruit flies to disruption in mating later in life

Date:
April 17, 2014
Source:
University of Pennsylvania School of Medicine
Summary:
Mom always said you need your sleep, and it turns out, she was right. According to a new study, the lack of sleep in young fruit flies profoundly diminishes their ability to do one thing they do really, really well -- make more flies. To address whether sleep loss in young flies affects development of courtship circuits, the team investigated a group of neurons implicated in courtship. One particular subset of those neurons was smaller in sleep-deprived animals than normal flies, suggesting a possible mechanism for how sleep deprivation can lead to altered courting behavior.

Drosophila melanogaster, the common fruit fly (stock image). The study, led by Amita Sehgal PhD, links sleep disruption in newborn fruit flies with a critical adult behavior: courtship and mating.
Credit: © tomatito26 / Fotolia

Mom always said you need your sleep, and it turns out, she was right. According to a new study published in Science this week from researchers at the Perelman School of Medicine at the University of Pennsylvania, lack of sleep in young fruit flies profoundly diminishes their ability to do one thing they do really, really well -- make more flies.

Related Articles


The study, led by Amita Sehgal PhD, professor of Neuroscience and a Howard Hughes Medical Institute (HHMI) Investigator, links sleep disruption in newborn fruit flies with a critical adult behavior: courtship and mating.

The team addressed sleep in the very youngest of flies. "These flies sleep considerably more than adults and that behavior repeats across the animal kingdom," Sehgal says. "Infant humans, rats, and flies, they all sleep a lot."

Co-author Matthew Kayser, MD, PhD, in the Department of Psychiatry and Center for Sleep and Circadian Neurobiology, whose research centers on the link between sleep disruption and human neuropsychiatric diseases, used the fly -- which is far more genetically pliant than mammals -- to ask two basic questions: Why do young animals sleep so much? And, what is the implication of altering those patterns?

The team used genetically manipulated flies to show that young flies normally produce relatively little dopamine -- a wake-promoting neurotransmitter -- in certain neural circuits that feed into the sleep-promoting brain region called the dorsal fan-shaped body (dFSB). Premature activation of those circuits profoundly inhibits the dFSB, reducing sleep.

That answers the first question, Sehgal explains: Young flies make less dopamine, which keeps the dFSB active and sleep levels high. These animals sleep more than adults and are harder to rouse from sleep.

Some clues to the second question -- what is the consequence of sleep loss -- came from Kayser's finding that increased dopamine in young flies not only causes sleep loss, but also affects their ability to court when they're older. "The flies spend less time courting, and those that do usually don't make it all the way to the end," Sehgal says.

To address whether sleep loss in young flies affects development of courtship circuits, the team investigated a group of neurons implicated in courtship. One particular subset of those neurons, localized in a specific brain region called VA1v, was smaller in sleep-deprived animals than normal flies, suggesting a possible mechanism for how sleep deprivation can lead to altered courting behavior.

That sleep-deprived flies have altered behavior is not itself a novel finding, Sehgal notes. Earlier studies from her lab and others used mechanical disruption to alter sleep patterns, but in the current study, Sehgal's team was able to drill down to the specific neural network that is affected. "We identified the circuit that is less active in young flies. If you activate that circuit, you disrupt courtship by impairing the development of a different, courtship-relevant circuit."

The question now is how these findings relate to human behavior -- Kayser's original question. Though no direct lines can be drawn, the study "does provide the first mechanistic link between sleep in early life and adult behavior," says Sehgal.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amita Sehgal et al. A Critical Period of Sleep for Development of Courtship Circuitry and Behavior in Drosophila. Science, April 2014 DOI: 10.1126/science.1250553

Cite This Page:

University of Pennsylvania School of Medicine. "Connecting sleep deficits among young fruit flies to disruption in mating later in life." ScienceDaily. ScienceDaily, 17 April 2014. <www.sciencedaily.com/releases/2014/04/140417141905.htm>.
University of Pennsylvania School of Medicine. (2014, April 17). Connecting sleep deficits among young fruit flies to disruption in mating later in life. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2014/04/140417141905.htm
University of Pennsylvania School of Medicine. "Connecting sleep deficits among young fruit flies to disruption in mating later in life." ScienceDaily. www.sciencedaily.com/releases/2014/04/140417141905.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins