Featured Research

from universities, journals, and other organizations

Microscopic organism plays a big role in ocean carbon cycling

Date:
April 24, 2014
Source:
University of California - San Diego
Summary:
Scientists have taken a leap forward in understanding the microscopic underpinnings of the ocean carbon cycle by pinpointing a bacterium that appears to play a dominant role in carbon consumption.

An atomic force microscope image of the bacterial strain AltSIO.
Credit: Alteromonas Scripps Institution of Oceanography

It's broadly understood that the world's oceans play a crucial role in the global-scale cycling and exchange of carbon between Earth's ecosystems and atmosphere. Now scientists at Scripps Institution of Oceanography at UC San Diego have taken a leap forward in understanding the microscopic underpinnings of these processes.

Related Articles


When phytoplankton use carbon dioxide to make new cells, a substantial portion of that cellular material is released into the sea as a buffet of edible molecules collectively called "dissolved organic carbon." The majority of these molecules are eventually eaten by microscopic marine bacteria, used for energy, and recycled back into carbon dioxide as the bacteria exhale. The amount of carbon that remains as cell material determines the role that ocean biology plays in locking up atmospheric carbon dioxide in the ocean.

Thus, these "recycling" bacteria play an important role in regulating how much of the planet's carbon dioxide is stored in the oceans. The detailed mechanisms of how the oceans contribute to this global carbon cycle at the microscopic scale, and which microbes have a leadership role in the breakdown process, are complex and convoluted problems to solve.

In a study published in the Proceedings of the National Academy of Sciences, Scripps scientists have pinpointed a bacterium that appears to play a dominant role in carbon consumption. Scripps's Byron Pedler, Lihini Aluwihare, and Farooq Azam found that a single bacterium called Alteromonas could consume as much dissolved organic carbon as a diverse community of organisms.

"This was a surprising result," said Pedler. "Because this pool of carbon is composed of an extremely diverse set of molecules, we believed that many different microbes with complementary abilities would be required to breakdown this material, but it appears that individual species may be pulling more weight than others when it comes to carbon cycling."

Pedler, a marine biology graduate student at Scripps, spent several years working with Scripps marine microbiologist Azam and chemical oceanographer Aluwihare in designing a system that would precisely measure carbon consumption by individual bacterial species. Because carbon in organic matter is essentially all around us, the most challenging part of conducting these experiments is avoiding contamination.

"Much of the carbon cycling in the ocean happens unseen to the naked eye, and it involves a complex mix of processes involving microbes and molecules," said Azam, a distinguished professor of marine microbiology. "The complexity and challenge is not just that we can't see it but that there's an enormous number of different molecules involved. The consequences of these microbial interactions are critically important for the global carbon cycle, and for us."

By demonstrating that key individual species within the ecosystem can play a disproportionally large role in carbon cycling, this study helps bring us a step closer to understanding the function these microbes play in larger questions of climate warming and increased acidity in the ocean.

"In order to predict how ecosystems will react when you heat up the planet or acidify the ocean, we first need to understand the mechanisms of everyday carbon cycling -- who's involved and how are they doing it?" said Pedler. "Now that we have this model organism that we know contributes to ocean carbon cycling, and a model experimental system to study the process, we can probe further to understand the biochemical and genetic requirements for the breakdown of this carbon pool in the ocean."

While the new finding exposes the unexpected capability of a significant species in carbon cycling, the scientists say there is much more to the story since whole communities of microbes may interact together or live symbiotically in the microscopic ecosystems of the sea.

Pedler, Aluwihare, and Azam are now developing experiments to test other microbes and their individual abilities to consume carbon.

The study was supported by the Gordon and Betty Moore Foundation Marine Microbiology Initiative through grant GBMF2758 and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. E. Pedler, L. I. Aluwihare, F. Azam. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1401887111

Cite This Page:

University of California - San Diego. "Microscopic organism plays a big role in ocean carbon cycling." ScienceDaily. ScienceDaily, 24 April 2014. <www.sciencedaily.com/releases/2014/04/140424151835.htm>.
University of California - San Diego. (2014, April 24). Microscopic organism plays a big role in ocean carbon cycling. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2014/04/140424151835.htm
University of California - San Diego. "Microscopic organism plays a big role in ocean carbon cycling." ScienceDaily. www.sciencedaily.com/releases/2014/04/140424151835.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Indictments in West Virginia Chemical Spill Case

Indictments in West Virginia Chemical Spill Case

AP (Dec. 17, 2014) A grand jury indicted four former executives of Freedom Industries, the company at the center of the Jan. 9, 2014 chemical spill in Charleston, West Virginia. The spill contaminated the Elk River and the water supply of 300,000 people. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins