Featured Research

from universities, journals, and other organizations

How a fish can fry: Scientists uncover evolutionary clues behind electric fish

Date:
April 29, 2014
Source:
Molecular Biology and Evolution (Oxford University Press)
Summary:
Take a muscle cell, modify it over millions of years, and you end up with an exciting and literally shocking evolutionary result: the electric fish. The authors of a new study speculate that the down-regulation of the Scn4aa gene leads to quicker evolution and adaptation. Electric fish have evolved several times in varying levels of complexity. By emitting and sensing weak electrical signals, the fish have bypassed the usual means of communication, such as with sounds and visual signals, and go directly to electrical signals. This allows them to quietly "talk" to each other in the dark so that most predators can't eavesdrop.

Take a muscle cell, modify it over millions of years, and you end up with an exciting and literally shocking evolutionary result: the electric fish. Electric fish have evolved several times in varying levels of complexity. Two groups of electric fish, one in Africa (Mormyroids) and one in South America (Gymnotiforms), have independently evolved sophisticated communication systems using these cells. By emitting and sensing weak electrical signals, the fish have bypassed the usual means of communication, such as with sounds and visual signals, and go directly to electrical signals. This allows them to quietly "talk" to each other in the dark so that most predators can't eavesdrop. Both groups of fish are incredibly diverse; one species, the famous electric eel of South America, even evolved such strong and intense electric signals that it can electrocute its prey.

Related Articles


A gene that is particularly important for electric cells is the voltage-gated sodium channel. During an ancestral gene duplication event, the voltage-gated sodium channel of muscle, Scn4a, duplicated to Scn4aa and Scn4ab. This caused sodium ion channel genes to diversify and in parallel the same duplicate gene, Scn4aa, specialized for electric cells in Africa and South America while the other, Scn4ab, remained specialized for muscles. The regulated currents flow through the ion channels and generate electrical signals. In the advanced online publication of Molecular Biology and Evolution, authors Ammon Thompson et al., showed that the Scn4aa sodium channel gene may have an evolutionary bias over its twin to take part in novel cell types derived from muscle cells.

Evidence for their hypothesis was provided by RT-qPCR data of Scn4aa and Scn4ab from electric fish, which were compared with non-electric fish. They speculate that the down-regulation of the Scn4aa gene leads to quicker evolution and adaptation. Also, in an exciting discovery, they found this same Scn4aa gene expression pattern in a species of fish that uses sound to communicate, showing another extraordinary evolutionary adaption from the ancient gene duplication. The results provide a compelling hypothesis that gene duplications and gene 'expression drift' may be a more common evolutionary phenomenon in the development of new organ systems.

By peering into the evolutionary history of these genes we're starting to understand why the same gene plays a role in the repeated evolution of these unusual organs," said researcher Ammon Thompson.


Story Source:

The above story is based on materials provided by Molecular Biology and Evolution (Oxford University Press). Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Thompson, D. Vo, C. Comfort, H. H. Zakon. Expression Evolution Facilitated the Convergent Neofunctionalization of a Sodium Channel Gene. Molecular Biology and Evolution, 2014; DOI: 10.1093/molbev/msu145

Cite This Page:

Molecular Biology and Evolution (Oxford University Press). "How a fish can fry: Scientists uncover evolutionary clues behind electric fish." ScienceDaily. ScienceDaily, 29 April 2014. <www.sciencedaily.com/releases/2014/04/140429184844.htm>.
Molecular Biology and Evolution (Oxford University Press). (2014, April 29). How a fish can fry: Scientists uncover evolutionary clues behind electric fish. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/04/140429184844.htm
Molecular Biology and Evolution (Oxford University Press). "How a fish can fry: Scientists uncover evolutionary clues behind electric fish." ScienceDaily. www.sciencedaily.com/releases/2014/04/140429184844.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins