Featured Research

from universities, journals, and other organizations

Decoding the chemical vocabulary of plants

Date:
May 1, 2014
Source:
Carnegie Institution
Summary:
Plants spend their entire lifetime rooted to one spot. When faced with a bad situation, such as a swarm of hungry herbivores or a viral outbreak, they have no option to flee but instead must fight to survive. What is the key to their defense? Chemistry. Understanding how plants evolved this prodigious chemical vocabulary has been a longstanding goal in plant biology.

Aphids attacking a plant. Plants spend their entire lifetime rooted to one spot. When faced with a bad situation, such as a swarm of hungry herbivores or a viral outbreak, they have no option to flee but instead must fight to survive.
Credit: Derrick Neill / Fotolia

Plants spend their entire lifetime rooted to one spot. When faced with a bad situation, such as a swarm of hungry herbivores or a viral outbreak, they have no option to flee but instead must fight to survive. What is the key to their defense? Chemistry.

Thanks to this ongoing conflict, plants have evolved into amazing chemists, capable of synthesizing tens of thousands of compounds from thousands of genes. These chemicals, known as specialized metabolites, allow plants to withstand transient threats from their environment. What's more, some of the same compounds benefit humans, with more than a third of medicinal drugs derived from plant specialized metabolites.

Understanding how plants evolved this prodigious chemical vocabulary has been a longstanding goal in plant biology. A team of Carnegie scientists led by Seung Yon Rhee and Lee Chae undertook a large-scale comparative analysis of plant genomes to investigate how specialized metabolism evolved. Their findings, as reported in Science, have major implications for the way scientists search for novel beneficial metabolites in plants.

To perform the study, the team developed a computational pipeline system that can transform a sequenced plant genome into a representation of the organism's metabolism. This is known as a metabolic network.

"The key to our analysis, or any comparative genome analysis, is the consistency and quality of the data across species," says Chae. "Our pipeline ensures this consistency with validated levels of accuracy and coverage."

Importantly, the pipeline allows the team to produce a reliable metabolic network for any sequenced genome in about two days or less--a vast savings in time and resources when compared to the previously months-long process, notes Chae.

Using the pipeline, the team reconstructed and analyzed metabolic networks for 16 species in the green plant lineage, including flowering plants, algae, and mosses. They found that genes producing specialized metabolites exhibit unusual properties in the way they evolved, including their number and organization within each genome, the genetic mechanisms by which they form, and their tendency to be simultaneously activated.

Collectively, these properties represent a distinct signature of specialized metabolic genes that offers an innovative strategy for the discovery of novel specialized metabolites from various plant species. Such discoveries could have wide-ranging implications for many research fields, including agriculture, biotechnology, drug discovery, and synthetic biology.

"Despite our reliance on plant compounds for health and well-being, we know very little about how they are produced or the true extent of their diversity in nature," says Rhee. "We hope that our findings will enable researchers to use these signatures as a tool to discover previously unknown specialized metabolites, to investigate how they benefit the plant, and to determine how they might benefit us."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Chae, T. Kim, R. Nilo-Poyanco, S. Y. Rhee. Genomic Signatures of Specialized Metabolism in Plants. Science, 2014; 344 (6183): 510 DOI: 10.1126/science.1252076

Cite This Page:

Carnegie Institution. "Decoding the chemical vocabulary of plants." ScienceDaily. ScienceDaily, 1 May 2014. <www.sciencedaily.com/releases/2014/05/140501142225.htm>.
Carnegie Institution. (2014, May 1). Decoding the chemical vocabulary of plants. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2014/05/140501142225.htm
Carnegie Institution. "Decoding the chemical vocabulary of plants." ScienceDaily. www.sciencedaily.com/releases/2014/05/140501142225.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins