Featured Research

from universities, journals, and other organizations

New atom-scale knowledge on the function of biological photosensors

Date:
May 2, 2014
Source:
Suomen Akatemia (Academy of Finland)
Summary:
The research groups have clarified how the atom structure of bacterial red light photosensors changes when sensing light. The research reveals structural changes in phytochrome protein when illuminated. The function of few biological photosensors are already utilised in other fields of science, especially in neurosciences.

The crystal structure of bacterial phytochrome changes when illuminated.
Credit: Academy of Finland

The research groups of Janne Ihalainen (University of Jyvδskylδ) and Sebastian Westenhoff (University of Gothenburg) have clarified how the atom structure of bacterial red light photosensors changes when sensing light. The research reveals structural changes in phytochrome protein when illuminated.

"The results are a unique demonstration of proteins' ability to structural changes in different phases of their operation. This helps to understand how the biological photosensors function. The modelling and utilisation of protein for other applications becomes much easier when the protein structures, their changes and the speed of change are known," says Professor Ihalainen.

The function of few biological photosensors are already utilised in other fields of science, especially in neurosciences. By utilising reactions that are controlled by light, it is possible to achieve new breakthroughs in the cell biological research and, for example, in medical applications such as in phototherapy and in molecular diagnostics.

Organisms use photosensor proteins to sense light on different wavelengths. For example, mammals have rhodopsin proteins in their eyes. Phytochromes, one of the photosensor proteins of plants, fungi and bacteria, are sensitive to red light. The function of these photosensors was known already in 1970s and 1980s, but their molecular-level operating mechanisms are still unknown.

A pioneering research method

Time-resolved wide-angle X-ray scattering was used to study structural changes of this rather large protein complex in a solution form. The technique, TR-WAXS, is relatively new and in this study a successful combination of the experimental data with the molecular dynamic simulations enabled to track the detailed structural changes of the protein.

"We hope that other groups using TR-WAXS would test similar data-analysis method as well." Ihalainen says.

The light sensitive phytochrome structures were clarified both in a crystal form and in a solution. From the crystal structures, it is possible to see that small movement of individual atoms (scale of 0.1 -- 0.2 nm) caused by the absorption of light is amplified to large structural changes (3 nanometres) in the whole protein complex. This amplification mechanism enables the light induced signal transmission from one protein to another very quickly and with precise replication accuracy. In turn, this signal transmission process initiates cellular-level changes in the organism.

The project "New strategies for detection conformational changes of proteins in real time" is funded by the Academy of Finland.


Story Source:

The above story is based on materials provided by Suomen Akatemia (Academy of Finland). Note: Materials may be edited for content and length.


Journal Reference:

  1. Heikki Takala, Alexander Bjφrling, Oskar Berntsson, Heli Lehtivuori, Stephan Niebling, Maria Hoernke, Irina Kosheleva, Robert Henning, Andreas Menzel, Janne A. Ihalainen, Sebastian Westenhoff. Signal amplification and transduction in phytochrome photosensors. Nature, 2014; DOI: 10.1038/nature13310

Cite This Page:

Suomen Akatemia (Academy of Finland). "New atom-scale knowledge on the function of biological photosensors." ScienceDaily. ScienceDaily, 2 May 2014. <www.sciencedaily.com/releases/2014/05/140502081335.htm>.
Suomen Akatemia (Academy of Finland). (2014, May 2). New atom-scale knowledge on the function of biological photosensors. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/05/140502081335.htm
Suomen Akatemia (Academy of Finland). "New atom-scale knowledge on the function of biological photosensors." ScienceDaily. www.sciencedaily.com/releases/2014/05/140502081335.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins