Featured Research

from universities, journals, and other organizations

Color of blood: Pigment helps stage symbiosis in squid

Date:
May 15, 2014
Source:
University of Wisconsin-Madison
Summary:
The relationship between the Hawaiian bobtail squid and the bacterium Vibrio fischeri is well chronicled, but a group of microbiologists adds a new wrinkle to the story: it seems that the blood pigment hemocyanin plays a dual role in helping the squid recruit and sustain the bacterium it uses to avoid predation. "In the early events of symbiosis, hemocyanin appears to have antimicrobial activity," says one co-author.

The Hawaiian bobtail squid, in the lab of Margaret McFall-Ngai, offers a unique platform for studying the symbiotic interaction between an animal and bacteria it needs to survive.
Credit: Chris Frazee, UW School of Medicine and Public Health

The small but charismatic Hawaiian bobtail squid is known for its predator-fooling light organ.

To survive, the nocturnal cephalopod depends on a symbiotic association with a luminescent bacterium that gives it the ability to mimic moonlight on the surface of the ocean and, in the fashion of a Klingon cloaking device, deceive barracuda and other fish that would happily make a meal of the small creature.

The relationship between the squid and the bacterium Vibrio fischeri is well chronicled, but writing in the current issue of the journal Proceedings of the Royal Society B, a group led by University of Wisconsin-Madison microbiologists Margaret McFall-Ngai, Edward Ruby and their colleagues adds a new wrinkle to the story.

"The squid has seen an opportunity to recruit an organism to make light," explains McFall-Ngai, a UW-Madison professor of medical microbiology in the School of Medicine and Public Health. "But to do that you have to tame it. You have to train it to do what you want it to do."

In the case of the bobtail squid, it seems that the blood pigment hemocyanin plays a dual role in helping the squid recruit and sustain the bacterium it uses to avoid predation.

Like its human analog hemoglobin, hemocyanin is primarily responsible for transporting oxygen from the squid respiratory system to the rest of the body. But the hemocyanin protein also appears to be deployed in a way to help the squid recruit its population of Vibrio fischeri, which the squid flushes and replenishes on a daily cycle to enable its nocturnal defenses.

"In the early events of symbiosis, hemocyanin appears to have antimicrobial activity," says Ruby, also a UW-Madison professor of medical microbiology and a co-author of the new report. "We think it is part of the mechanism by which Vibrio fischeri become specific."

In essence, the squid is using the antimicrobial properties of hemocyanin to weed out competing bacteria so that only the glowing Vibrio fischeri can colonize the surfaces of the crypts that compose the squid's defensive light organ.

How Vibrio fischeri copes with the antimicrobial properties of the squid's blood pigment is an unanswered question, but agents with selective antimicrobial activity are not unknown: "People tend to assume that whenever they encounter an antimicrobial, it is meant to kill everything," Ruby notes. "Here, we know some bacteria are being courted."

The second role played by the hemocyanin protein in helping to establish symbiosis is more in keeping with its traditional function of ferrying oxygen. The oxygen-transporting properties of hemocyanin are exploited by the squid as the symbiotic population of Vibrio fischeri requires lots of oxygen to fuel the chemical reaction that causes the microbe to light up in the dark. The animal seems able to direct its symbionts to modulate the acidity of the crypts where they take up residence, creating oxygen rich niches at night while suppressing the flow of oxygen during the day when the squid has no need of its companions' glow.

"At night the squid is creating an environment that is more acidic, where oxygen is more easily dumped," says Ruby.

"Oxygen is really pivotal," adds McFall-Ngai. "There is a lot of energy that goes into making light."

The new findings, according to the Wisconsin biologists, help reveal some of the hidden rules of symbiosis, processes that are also likely occurring in higher animals, including humans, who also depend on microbes to perform critical services.

"There is a dynamic interplay in symbiosis," says McFall-Ngai, who designed and performed the study with UW-Madison post-doctoral fellow Natacha Kremer, the lead author of the Proceedings of the Royal Society B report. "In humans, there is an ecological succession in microbiota. What we are looking for in our model are the general themes."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by Terry Devitt. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Kremer, J. Schwartzman, R. Augustin, L. Zhou, E. G. Ruby, S. Hourdez, M. J. McFall-Ngai. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2014; 281 (1785): 20140504 DOI: 10.1098/rspb.2014.0504

Cite This Page:

University of Wisconsin-Madison. "Color of blood: Pigment helps stage symbiosis in squid." ScienceDaily. ScienceDaily, 15 May 2014. <www.sciencedaily.com/releases/2014/05/140515113218.htm>.
University of Wisconsin-Madison. (2014, May 15). Color of blood: Pigment helps stage symbiosis in squid. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/05/140515113218.htm
University of Wisconsin-Madison. "Color of blood: Pigment helps stage symbiosis in squid." ScienceDaily. www.sciencedaily.com/releases/2014/05/140515113218.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins