Featured Research

from universities, journals, and other organizations

Misguided DNA-repair proteins caught in the act

Date:
May 21, 2014
Source:
Scripps Research Institute
Summary:
Accumulation of DNA damage can cause aggressive forms of cancer and accelerated aging, so the body’s DNA repair mechanisms are normally key to good health. However, in some diseases the DNA repair machinery can become harmful. Scientists have discovered some of the key proteins involved in one type of DNA repair gone awry.

Accumulation of DNA damage can cause aggressive forms of cancer and accelerated aging, so the body's DNA repair mechanisms are normally key to good health. However, in some diseases the DNA repair machinery can become harmful. Scientists led by a group of researchers at The Scripps Research Institute (TSRI) in La Jolla, CA, have discovered some of the key proteins involved in one type of DNA repair gone awry.

Related Articles


The focus of the new study, published in the May 22, 2014 edition of the journal Cell Reports, is a protein called Ring1b. The TSRI researchers found that Ring1b promotes fusion between telomeres -- repetitive sequences of DNA that act as bumpers on the ends of chromosomes and protect important genetic information. The scientists also showed inhibiting this protein can significantly reduce the burden on cells affected by such telomere dysfunction.

"We are very far from therapy, but I think a lot of the factors we've identified could play key roles in processing dysfunctional telomeres, a key event in tumorigenesis [cancer initiation]," said Eros Lazzerini Denchi, assistant professor at TSRI who led the study.

The Trouble with Telomeres

Humans are born with long telomeres, but these become shorter every time a cell in the body divides. With age, telomeres become very short, especially in tissues that have high proliferation rate.

That's when the problems start. When telomeres become too short, they lose their telomere protective cap and become recognized by the DNA repair machinery proteins. This can lead to the fusion of chromosomes "end-to-end" into a string-like formation.

Joined chromosomes represent an abnormal genomic arrangement that is extremely unstable in dividing cells. Upon cell division, joined chromosomes can rupture, creating new break points that can further re-engage aberrant DNA repair. These cycles of fusion and breakage cause a rampant level of mutations that are fertile ground for cancer.

"You basically scramble the genome, and then you have lots of chances to select very nasty mutations," said Lazzerini Denchi.

Setting a DNA Trap

To understand how to prevent these deleterious fusions, Lazzerini Denchi and his colleagues wanted to identify all the repair factors involved.

The researchers decided to set a trap. Using genetically engineered cells, the researchers were able to remove a telomere binding protein called TRF2. Without TRF2, telomeres are unprotected and DNA repair proteins are recruited to chromosome ends, where they promote chromosome fusions.

The researchers then trapped and isolated all the proteins they found bound to the telomeres. "It was like a fishing expedition, and the bait in our case was the telomeric DNA sequence," said Lazzerini Denchi.

Cristina Bartocci, a postdoctoral fellow in Lazzerini Denchi's lab at the time and first author of the new study, spent more than two years perfecting a technique to identify proteins that flocked to the telomeres. "It was a pretty challenging experiment to perform," she said.

The researchers then separated the proteins from the DNA sequences and sent the proteins to TSRI Professor John Yates's laboratory for mass spectrometry analysis. This analysis revealed 24 known repair proteins and 100 additional proteins whose role in dysfunctional telomeres had not been previously described.

The team then refined their search and took a closer look at the role of the repair factor protein called Ring1b. For the first time, the scientists were able to link Ring1b to the chromosome fusion process. Bartocci said the role of Ring1b in dysfunctional telomere repair was "pretty striking."

"If you don't have Ring1b, the process of fusing the chromosomes is not very efficient," said Lazzerini Denchi.

In addition to Ring1b, the team has found nearly 100 factors that might be related to errors in DNA damage repair. The next step in this research is to further refine the long list of DNA repair factors and study other proteins that could affect human health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cristina Bartocci, Jolene K. Diedrich, Iliana Ouzounov, Julia Li, Andrea Piunti, Diego Pasini, John R. Yates, Eros Lazzerini Denchi. Isolation of Chromatin from Dysfunctional Telomeres Reveals an Important Role for Ring1b in NHEJ-Mediated Chromosome Fusions. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.04.002

Cite This Page:

Scripps Research Institute. "Misguided DNA-repair proteins caught in the act." ScienceDaily. ScienceDaily, 21 May 2014. <www.sciencedaily.com/releases/2014/05/140521175922.htm>.
Scripps Research Institute. (2014, May 21). Misguided DNA-repair proteins caught in the act. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/05/140521175922.htm
Scripps Research Institute. "Misguided DNA-repair proteins caught in the act." ScienceDaily. www.sciencedaily.com/releases/2014/05/140521175922.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins