Featured Research

from universities, journals, and other organizations

Common obesity gene contributes to weight gain

Date:
May 22, 2014
Source:
Columbia University Medical Center
Summary:
A gene commonly linked to obesity -— FTO —- contributes to weight gain, researchers have demonstrated. The study shows that variations in FTO indirectly affect the function of the primary cilium, a little-understood hair-like appendage on brain and other cells. Specific abnormalities of cilium molecules, in turn, increase body weight, in some instances, by affecting the function of receptors for leptin, a hormone that suppresses appetite. The findings, made in mice, suggest that it might be possible to modify obesity through interventions that alter the function of the cilium.

Microscopic image of brain cells (stained purple). A new study shows how FTO, a gene commonly associated with obesity, contributes to weight gain. Changes in this gene indirectly affect the function of the primary cilium (shown here in green) — a hair-like appendage found on brain and other cells. Irregularities in the cilium, in turn, can affect receptors for leptin, which suppresses appetite.
Credit: Lab of Rudolph L. Leibel, MD

Researchers have discovered how a gene commonly linked to obesity -- FTO -- contributes to weight gain. The study shows that variations in FTO indirectly affect the function of the primary cilium, a little-understood hair-like appendage on brain and other cells. Specific abnormalities of cilium molecules, in turn, increase body weight, in some instances, by affecting the function of receptors for leptin, a hormone that suppresses appetite. The findings, made in mice, suggest that it might be possible to modify obesity through interventions that alter the function of the cilium, according to scientists at Columbia University Medical Center (CUMC).

"If our findings are confirmed, they could explain how common genetic variants in the gene FTO affect human body weight and lead to obesity," said study leader Rudolph L. Leibel, MD, the Christopher J. Murphy Memorial Professor of Diabetes Research, professor of pediatrics and medicine, and co-director of the Naomi Berrie Diabetes Center at CUMC. "The better we can understand the molecular machinery of obesity, the better we will be able to manipulate these mechanisms and help people lose weight."

The study was published on May 6 in the online edition of Cell Metabolism.

Since 2007, researchers have known that common variants in the fat mass and obesity-associated protein gene, also known as FTO, are strongly associated with increased body weight in adults. But it was not understood how alterations in FTO might contribute to obesity. "Studies have shown that knocking out FTO in mice doesn't necessarily lead to obesity, and not all humans with FTO variants are obese," said Dr. Leibel. "Something else is going on at this location that we were missing."

In experiments with mice, the CUMC team observed that as FTO expression increased or decreased, so did the expression of a nearby gene, RPGRIP1L. RPGRIP1L is known to play a role in regulating the primary cilium. "Aberrations in the cilium have been implicated in rare forms of obesity," said Dr. Leibel. "But it wasn't clear how this structure might be involved in garden-variety obesity."

Dr. Leibel and his colleague, George Stratigopoulos, PhD, associate research scientist, hypothesized that common FTO variations in noncoding regions of the gene do not change its primary function, which is to produce an enzyme that modifies DNA and RNA. Instead, they suspected that FTO variations indirectly affect the expression of RPGRIP1L. "When Dr. Stratigopoulos analyzed the sequence of FTO's intron -- its noncoding, or nonprotein-producing, portion -- we found that it serves as a binding site for a protein called CUX1," said Dr. Leibel. "CUX1 is a transcription factor that modifies the expression of RPGRIP1L."

Next, Dr. Stratigopoulos set out to determine whether RPGRIP1L plays a role in obesity. He created mice lacking one of their two RPGRIP1L genes, in effect, reducing but not eliminating the gene's function. (Mice that lack both copies of the gene have several serious defects that would obscure the effects on food intake.) Mice with one copy of RPGRIP1L had a higher food intake, gained significantly more weight, and had a higher percentage of body fat than controls.

In a subsequent experiment, the CUMC team found that RPGRIP1L-deficient mice had impaired leptin signaling. "The receptors didn't convene properly on the cell surface around the base of cilium," said Dr. Leibel. "RPGRIP1L appears to play a role in getting leptin receptors to form clusters, where they are more efficient in signaling."

"Overall," said Dr. Leibel, "our findings open a window onto the possible role of the primary cilium in common forms of obesity."

The CUMC team is now conducting studies to learn more about the various components of the FTO- RPGRIP1L pathway, which ciliary proteins are affected by changes in this pathway, and how these proteins mediate actions of leptin receptors.


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. George Stratigopoulos, Jayne F. Martin Carli, Diana R. O’Day, Liheng Wang, Charles A. LeDuc, Patricia Lanzano, Wendy K. Chung, Michael Rosenbaum, Dieter Egli, Daniel A. Doherty, Rudolph L. Leibel. Hypomorphism for RPGRIP1L, a Ciliary Gene Vicinal to the FTO Locus, Causes Increased Adiposity in Mice. Cell Metabolism, 2014; 19 (5): 767 DOI: 10.1016/j.cmet.2014.04.009

Cite This Page:

Columbia University Medical Center. "Common obesity gene contributes to weight gain." ScienceDaily. ScienceDaily, 22 May 2014. <www.sciencedaily.com/releases/2014/05/140522175252.htm>.
Columbia University Medical Center. (2014, May 22). Common obesity gene contributes to weight gain. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/05/140522175252.htm
Columbia University Medical Center. "Common obesity gene contributes to weight gain." ScienceDaily. www.sciencedaily.com/releases/2014/05/140522175252.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) — The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) — Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins