Featured Research

from universities, journals, and other organizations

Braking mechanisms in cellular signaling: New insight

Date:
June 5, 2014
Source:
Carnegie Institution
Summary:
Researchers studying a flowering plant has zeroed in on the way cells manage external signals about prevailing conditions, a capability that is essential for cells to survive in a fluctuating environment. The study focuses on the tiny mustard plant Arabidopsis, which is frequently used by scientists as an experimental model.

A team of researchers studying a flowering plant has zeroed in on the way cells manage external signals about prevailing conditions, a capability that is essential for cells to survive in a fluctuating environment.

Researchers at UC Berkeley, the Plant Gene Expression Center, UC San Francisco, and the Carnegie Institution for Science identified a novel mechanism by which the strength of such an external signal is reduced, or attenuated. Their work focuses on the tiny mustard plant Arabidopsis, which is frequently used by scientists as an experimental model. Their findings are published in Science June 6.

Attenuation of signaling is analogous to the brakes on a car. While acceleration is desirable, acceleration without restraint can be disastrous. In this research, Arabidopsis seedlings were taken from subterranean darkness into sunlight, which triggered a response leading to "rapid and extensive" redirection of gene expression, ultimately resulting in familiar green seedlings.

But a brake on this acceleration of new gene expression is also necessary to restabilize the cells at a new equilibrium. The research team discovered a nuclear-localized, bimolecular signaling configuration by which the braking mechanism is directly linked to the accelerator, thereby providing simultaneous acceleration and restraint. By identifying the mechanism involved in this attenuation process, the team's discovery has potential implications ranging from agricultural to cancer research.

Cellular signaling triggered by external cues such as sunlight enables organisms to adapt to the prevailing conditions. When the organism perceives something that requires a response, a series of chemical signals is activated. This signaling is generally very robust at first. But at some point it is necessary to dial it back or turn it off entirely -- a restraint that falls to different, less-understood signaling pathways. These types of restraint functions are of great importance but poorly understood, as scientists have focused mostly on how the cells get stimulated in the first place.

Light-signaling in Arabidopsis involves the binding of an activated photoreceptor molecule (called phytochrome) to a transcription factor (gene-switch) called PIF. This binding destroys PIF, switching off its target genes. However, the researchers found that in imposing PIF's destruction, phytochrome signs its own death warrant and is simultaneously executed, thus reducing the incoming light-signaling intensity.

"Understanding such molecular mechanisms underlying the light response kinetics is important for engineering crops that can better adapt to environmental fluctuations," said Carnegie's Zhiyong Wang, one of the co-authors.

This bimolecular mutually assured destruction (MAD) mechanism of signaling attenuation appears to represent a new configuration, thus broadening our understanding of the range of mechanisms nature has evolved for this critical function.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Ni, S.-L. Xu, J. M. Tepperman, D. J. Stanley, D. A. Maltby, J. D. Gross, A. L. Burlingame, Z.-Y. Wang, P. H. Quail. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science, 2014; 344 (6188): 1160 DOI: 10.1126/science.1250778

Cite This Page:

Carnegie Institution. "Braking mechanisms in cellular signaling: New insight." ScienceDaily. ScienceDaily, 5 June 2014. <www.sciencedaily.com/releases/2014/06/140605155728.htm>.
Carnegie Institution. (2014, June 5). Braking mechanisms in cellular signaling: New insight. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/06/140605155728.htm
Carnegie Institution. "Braking mechanisms in cellular signaling: New insight." ScienceDaily. www.sciencedaily.com/releases/2014/06/140605155728.htm (accessed August 27, 2014).

Share This




More Plants & Animals News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Firefighters Rescue Puppy Stuck in Tire

Raw: Firefighters Rescue Puppy Stuck in Tire

AP (Aug. 26, 2014) It took Houston firefighters more than an hour to free a puppy who got its head stuck in a tire. (Aug. 26) Video provided by AP
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Great White Shark Spotted Off Massachusetts Coast

Great White Shark Spotted Off Massachusetts Coast

Reuters - US Online Video (Aug. 26, 2014) A great white shark is spotted off the shore at Duxbury beach in Massachusetts forcing beach goers out of the water. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Elk Wanders Into German Office Building

Raw: Elk Wanders Into German Office Building

AP (Aug. 25, 2014) A young bull elk wandered inside the office building of a company in Dresden, Germany on Monday. The elk became trapped between a wall and glass windows while rescue workers tried to rescue him safely. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins