Featured Research

from universities, journals, and other organizations

Elucidating optimal biological tissue shape during growth

Date:
June 11, 2014
Source:
Springer Science+Business Media
Summary:
The role of cells' alignment in shaping biological tissue has been the focus of recent research. This study's hypothesis is that if the cells that constitute a tissue are organized and aligned collectively in the same direction, the force produced by each individual cell division event builds up. The authors show that the accumulation of forces may be sufficient to shape the biological tissue by elongating it.

A team of European scientists has now extended a previous biophysical model to investigate elongated growth within biological tissues by describing the evolution over time of the shape of a fruit fly's wing. They found the aspect ratio of the typical biological shapes may exhibit a maximum at finite time and then decrease.

For sufficiently large tissues, the shape is expected to approach that of a disk or sphere. These findings have been reported by Carles Blanch-Mercader from the University of Barcelona, Spain, and colleagues, in a paper published in European Physical Journal E. They provide a more general classification than previously available of the different types of morphologies a tissue can be expected to attain, depending on its initial size and its physical properties.

In this study, the authors consider a model of the biological tissue represented as a so-called active nematic fluid. It consists of self-aligned cells that have long-range directional order, with their long axes roughly parallel. The authors also integrated the dynamics of the tissue shape related to cell division-by focusing on time scales much longer than the cell cycle-using so-called conformal mapping techniques.

The model takes into account the previously identified local force that a cell produces when it starts dividing to replicate, which is distributed in a way that is dependent on the direction of growth. It also accounts for two other realistic forces typically found in biological tissues: friction with the environment and capillary tension caused by cell aggregates.

This study's hypothesis is that if the cells that constitute a tissue are organized and aligned collectively in the same direction, the force produced by each individual cell division event builds up. The authors show that the accumulation of forces may be sufficient to shape the biological tissue by elongating it.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Blanch-Mercader, J. Casademunt, J. F. Joanny. Morphology and growth of polarized tissues. The European Physical Journal E, 2014; 37 (5) DOI: 10.1140/epje/i2014-14041-2

Cite This Page:

Springer Science+Business Media. "Elucidating optimal biological tissue shape during growth." ScienceDaily. ScienceDaily, 11 June 2014. <www.sciencedaily.com/releases/2014/06/140611093441.htm>.
Springer Science+Business Media. (2014, June 11). Elucidating optimal biological tissue shape during growth. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2014/06/140611093441.htm
Springer Science+Business Media. "Elucidating optimal biological tissue shape during growth." ScienceDaily. www.sciencedaily.com/releases/2014/06/140611093441.htm (accessed September 15, 2014).

Share This



More Plants & Animals News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins