Featured Research

from universities, journals, and other organizations

Elucidating optimal biological tissue shape during growth

Date:
June 11, 2014
Source:
Springer Science+Business Media
Summary:
The role of cells' alignment in shaping biological tissue has been the focus of recent research. This study's hypothesis is that if the cells that constitute a tissue are organized and aligned collectively in the same direction, the force produced by each individual cell division event builds up. The authors show that the accumulation of forces may be sufficient to shape the biological tissue by elongating it.

A team of European scientists has now extended a previous biophysical model to investigate elongated growth within biological tissues by describing the evolution over time of the shape of a fruit fly's wing. They found the aspect ratio of the typical biological shapes may exhibit a maximum at finite time and then decrease.

Related Articles


For sufficiently large tissues, the shape is expected to approach that of a disk or sphere. These findings have been reported by Carles Blanch-Mercader from the University of Barcelona, Spain, and colleagues, in a paper published in European Physical Journal E. They provide a more general classification than previously available of the different types of morphologies a tissue can be expected to attain, depending on its initial size and its physical properties.

In this study, the authors consider a model of the biological tissue represented as a so-called active nematic fluid. It consists of self-aligned cells that have long-range directional order, with their long axes roughly parallel. The authors also integrated the dynamics of the tissue shape related to cell division-by focusing on time scales much longer than the cell cycle-using so-called conformal mapping techniques.

The model takes into account the previously identified local force that a cell produces when it starts dividing to replicate, which is distributed in a way that is dependent on the direction of growth. It also accounts for two other realistic forces typically found in biological tissues: friction with the environment and capillary tension caused by cell aggregates.

This study's hypothesis is that if the cells that constitute a tissue are organized and aligned collectively in the same direction, the force produced by each individual cell division event builds up. The authors show that the accumulation of forces may be sufficient to shape the biological tissue by elongating it.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Blanch-Mercader, J. Casademunt, J. F. Joanny. Morphology and growth of polarized tissues. The European Physical Journal E, 2014; 37 (5) DOI: 10.1140/epje/i2014-14041-2

Cite This Page:

Springer Science+Business Media. "Elucidating optimal biological tissue shape during growth." ScienceDaily. ScienceDaily, 11 June 2014. <www.sciencedaily.com/releases/2014/06/140611093441.htm>.
Springer Science+Business Media. (2014, June 11). Elucidating optimal biological tissue shape during growth. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/06/140611093441.htm
Springer Science+Business Media. "Elucidating optimal biological tissue shape during growth." ScienceDaily. www.sciencedaily.com/releases/2014/06/140611093441.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins