Featured Research

from universities, journals, and other organizations

CRISPR system can promote antibiotic resistance

Date:
July 14, 2014
Source:
Emory Health Sciences
Summary:
CRISPR, a system of genes that bacteria use to fend off viruses, is involved in promoting antibiotic resistance in Francisella novicida, a close relative of the bacterium that causes tularemia. The finding contrasts with previous observations in other bacteria that the CRISPR system hinders the spread of antibiotic resistance genes.

The CRISPR system has attracted considerable attention for its potential uses in biotechnology, but its roles in bacterial gene regulation are still surprising scientists. In Francisella bacteria, defects in the CRISPR system lead to increased permeability and vulnerability to antibiotics.
Credit: CDC

CRISPR, a system of genes that bacteria use to fend off viruses, is involved in promoting antibiotic resistance in Francisella novicida, a close relative of the bacterium that causes tularemia. The finding contrasts with previous observations in other bacteria that the CRISPR system hinders the spread of antibiotic resistance genes.

The results are scheduled for publication in PNAS Early Edition.

The CRISPR system has attracted considerable attention for its potential uses in genetic engineering and biotechnology, but its roles in bacterial gene regulation are still surprising scientists. It was discovered by dairy industry researchers seeking to prevent phages, viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt.

Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information to fight off the phages by chewing up their DNA. Cas9, an essential part of the CRISPR system, is a DNA-chewing enzyme that has been customized for use in biotechnology.

F. novicida infects rodents and only rarely infects humans, but it is a model for studying the more dangerous F. tularensis, a potential biological weapon. The bacteria infect and replicate inside macrophages, a type of immune cell.

Researchers at the Division of Infectious Diseases of the Emory University School of Medicine and the Emory Vaccine Center were surprised to find that when the gene encoding Cas9 is mutated in F. novicida bacteria, they become more vulnerable to polymyxin B as well as standard antibiotic treatments such as streptomycin and kanamycin. They were able to trace the effects of the mutation back to a defect in "envelope integrity." Cas9 regulates production of a lipoprotein, which appears to alter membrane permeability.

"The mutant bacteria are more permeable to certain chemicals from the outside," says David Weiss, PhD, assistant professor of medicine (infectious diseases) at Emory University School of Medicine and Yerkes National Primate Research Center. "That increased permeability also seems to make them more likely to set off alarms when they are infecting mammalian cells."

Graduate student Timothy Sampson, working with Weiss, found that Cas9 mutant bacteria may be more likely to leak bits of their DNA, a trigger for immune cells to get excited. This is a large reason why Cas9 is necessary for F. novicida to evade the mammalian immune system, a finding published in a 2013 Nature paper.

The regulatory role for Cas9 does not appear to be restricted to F. novicida; Weiss's team found that a Cas9 mutant in Campylobacter jejuni, a bacterium that is a common cause of human gastroenteritis, also has increased permeability and impaired antibiotic resistance.

The findings add to recent discoveries where Cas9 has been found to be involved in virulence -- the ability to cause disease in a living animal or human -- in various pathogenic bacteria such as Campylobacter and Neisseria meningitides.


Story Source:

The above story is based on materials provided by Emory Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. R. Sampson, B. A. Napier, M. R. Schroeder, R. Louwen, J. Zhao, C.-Y. Chin, H. K. Ratner, A. C. Llewellyn, C. L. Jones, H. Laroui, D. Merlin, P. Zhou, H. P. Endtz, D. S. Weiss. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1323025111

Cite This Page:

Emory Health Sciences. "CRISPR system can promote antibiotic resistance." ScienceDaily. ScienceDaily, 14 July 2014. <www.sciencedaily.com/releases/2014/07/140714152435.htm>.
Emory Health Sciences. (2014, July 14). CRISPR system can promote antibiotic resistance. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/07/140714152435.htm
Emory Health Sciences. "CRISPR system can promote antibiotic resistance." ScienceDaily. www.sciencedaily.com/releases/2014/07/140714152435.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins