Featured Research

from universities, journals, and other organizations

CRISPR system can promote antibiotic resistance

Date:
July 14, 2014
Source:
Emory Health Sciences
Summary:
CRISPR, a system of genes that bacteria use to fend off viruses, is involved in promoting antibiotic resistance in Francisella novicida, a close relative of the bacterium that causes tularemia. The finding contrasts with previous observations in other bacteria that the CRISPR system hinders the spread of antibiotic resistance genes.

The CRISPR system has attracted considerable attention for its potential uses in biotechnology, but its roles in bacterial gene regulation are still surprising scientists. In Francisella bacteria, defects in the CRISPR system lead to increased permeability and vulnerability to antibiotics.
Credit: CDC

CRISPR, a system of genes that bacteria use to fend off viruses, is involved in promoting antibiotic resistance in Francisella novicida, a close relative of the bacterium that causes tularemia. The finding contrasts with previous observations in other bacteria that the CRISPR system hinders the spread of antibiotic resistance genes.

Related Articles


The results are scheduled for publication in PNAS Early Edition.

The CRISPR system has attracted considerable attention for its potential uses in genetic engineering and biotechnology, but its roles in bacterial gene regulation are still surprising scientists. It was discovered by dairy industry researchers seeking to prevent phages, viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt.

Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information to fight off the phages by chewing up their DNA. Cas9, an essential part of the CRISPR system, is a DNA-chewing enzyme that has been customized for use in biotechnology.

F. novicida infects rodents and only rarely infects humans, but it is a model for studying the more dangerous F. tularensis, a potential biological weapon. The bacteria infect and replicate inside macrophages, a type of immune cell.

Researchers at the Division of Infectious Diseases of the Emory University School of Medicine and the Emory Vaccine Center were surprised to find that when the gene encoding Cas9 is mutated in F. novicida bacteria, they become more vulnerable to polymyxin B as well as standard antibiotic treatments such as streptomycin and kanamycin. They were able to trace the effects of the mutation back to a defect in "envelope integrity." Cas9 regulates production of a lipoprotein, which appears to alter membrane permeability.

"The mutant bacteria are more permeable to certain chemicals from the outside," says David Weiss, PhD, assistant professor of medicine (infectious diseases) at Emory University School of Medicine and Yerkes National Primate Research Center. "That increased permeability also seems to make them more likely to set off alarms when they are infecting mammalian cells."

Graduate student Timothy Sampson, working with Weiss, found that Cas9 mutant bacteria may be more likely to leak bits of their DNA, a trigger for immune cells to get excited. This is a large reason why Cas9 is necessary for F. novicida to evade the mammalian immune system, a finding published in a 2013 Nature paper.

The regulatory role for Cas9 does not appear to be restricted to F. novicida; Weiss's team found that a Cas9 mutant in Campylobacter jejuni, a bacterium that is a common cause of human gastroenteritis, also has increased permeability and impaired antibiotic resistance.

The findings add to recent discoveries where Cas9 has been found to be involved in virulence -- the ability to cause disease in a living animal or human -- in various pathogenic bacteria such as Campylobacter and Neisseria meningitides.


Story Source:

The above story is based on materials provided by Emory Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. R. Sampson, B. A. Napier, M. R. Schroeder, R. Louwen, J. Zhao, C.-Y. Chin, H. K. Ratner, A. C. Llewellyn, C. L. Jones, H. Laroui, D. Merlin, P. Zhou, H. P. Endtz, D. S. Weiss. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1323025111

Cite This Page:

Emory Health Sciences. "CRISPR system can promote antibiotic resistance." ScienceDaily. ScienceDaily, 14 July 2014. <www.sciencedaily.com/releases/2014/07/140714152435.htm>.
Emory Health Sciences. (2014, July 14). CRISPR system can promote antibiotic resistance. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2014/07/140714152435.htm
Emory Health Sciences. "CRISPR system can promote antibiotic resistance." ScienceDaily. www.sciencedaily.com/releases/2014/07/140714152435.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins