Featured Research

from universities, journals, and other organizations

DNA replication: Molecular mechanism indicates novel routes to block uncontrolled cell division

Date:
July 31, 2014
Source:
MRC Clinical Sciences Centre, Imperial College London
Summary:
Scientists have revealed the intricate mechanisms involved in the enzyme that governs DNA duplication during cell division.

In a study recently published in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, reveal the intricate mechanisms involved in the enzyme that governs DNA duplication during cell division. By developing a sophisticated system using synthetic, chemical and structural biology approaches, the study reveals how a key enzyme involved in duplicating genetic information embraces DNA through a gated system, which opens up at precise positions allowing for a highly regulated replication process. This work enhances current understanding of an essential biological process and suggests a route for stopping cell division in disease such as cancer.

Related Articles


When a cell divides, genetic information is duplicated in a process known as DNA replication. For this to occur, a 'replication machine' is assembled on top of the DNA prior to duplication. A protein complex known as ORC that recognises the DNA replication origin initiates the whole process. Next, an enzyme, MCM2-7 helicase, whose role is to unwind and separate the two strands of the DNA helix, is loaded onto the DNA by the machine system ORC. The helicase is a ring shaped enzyme composed of six subunits (hexamer), though how the ring structure opens and encircles the DNA has, until now, remained a mystery.

Initial theories within in field assumed the helicase to exist in an open ring conformation. Speck's team argued that this would undoubtedly lead to poorly regulated DNA replication with no control or specificity. To examine the helicase activity in more detail, Jingchuan Sun at BNL used an electron microscope and revealed, contrary to initial theories, the helicase actually existed as a closed ring conformation.

To pinpoint where within the six subunits, the helicase opens to encompass the DNA, the team generated linkages that blocked ring opening at various positions. They found that if they blocked one specific interface, between MCM2 and MCM5, DNA could not enter. A small molecule called rapamycin brings the linkages together; such a molecular switch can be used to control DNA entry to the MCM ring and subsequent DNA replication. "Both in the context of our in vitro and in vivo experiments, we showed that opening of the MCM2/MCM5 interface is essential for helicase loading onto DNA," explains Christian.

"The field has known for a while that DNA can pass into the MCM2-7 ring, but has never been sure which MCM subunits are used for regulated helicase loading. By designing an elegant experiment, the Speck laboratory has now shown once and for all that the MCM2-5 is the only DNA entry point," says collaborator Huilin Li at BNL.

In eukaryotes, the MCM2-7 helicase forms a double hexamer (with another MCM2-7 unit) when it is loaded onto DNA. In this study, the group also settled the longstanding dispute surrounding whether the helicase is actually loaded as a single hexamer, which then dimerises, or is loaded as a dimer at the offset. They concluded that the helicase is in fact loaded as a single hexamer before forming a double hexamer.

In a successful collaboration that harnesses the electron microscopy expertise at BNL with the chemical biology and genetic expertise at the MRC Clinical Sciences Centre, the study addresses key questions detailing the processes involved in DNA replication. "Our work is aimed at understanding the molecular mechanism of DNA replication at a fundamental level. Yet our findings could also have important implications, possibly pointing to new ways to fight cancer, because DNA duplication is a prime target to inhibit cancer cell growth," says Christian.


Story Source:

The above story is based on materials provided by MRC Clinical Sciences Centre, Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. A. Samel, A. Fernandez-Cid, J. Sun, A. Riera, S. Tognetti, M. C. Herrera, H. Li, C. Speck. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes & Development, 2014; 28 (15): 1653 DOI: 10.1101/gad.242404.114

Cite This Page:

MRC Clinical Sciences Centre, Imperial College London. "DNA replication: Molecular mechanism indicates novel routes to block uncontrolled cell division." ScienceDaily. ScienceDaily, 31 July 2014. <www.sciencedaily.com/releases/2014/07/140731200952.htm>.
MRC Clinical Sciences Centre, Imperial College London. (2014, July 31). DNA replication: Molecular mechanism indicates novel routes to block uncontrolled cell division. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/07/140731200952.htm
MRC Clinical Sciences Centre, Imperial College London. "DNA replication: Molecular mechanism indicates novel routes to block uncontrolled cell division." ScienceDaily. www.sciencedaily.com/releases/2014/07/140731200952.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins