Featured Research

from universities, journals, and other organizations

Researchers find animal model for understudied type of muscular dystrophy

Date:
August 28, 2014
Source:
University of Minnesota Academic Health Center
Summary:
An animal research model has been developed for facioscapulohumeral muscular dystrophy (FSHD) to be used for muscle regeneration research as well as studies of the effectiveness of potential therapies for FSHD.

Researchers at the University of Minnesota have developed an animal research model for facioscapulohumeral muscular dystrophy (FSHD) to be used for muscle regeneration research as well as studies of the effectiveness of potential therapies for FSHD.

Related Articles


The research is published in the current edition of the journal Cell Reports.

There is no treatment for FSHD, which is thought by many to be the most common type of muscular dystrophy. FSHD is an unusual genetic disorder because, unlike most genetic diseases, it is not caused by the loss of a functional gene, but rather by the modification of an existing gene, through a genetic mutation. This mutation makes the gene more active so patients with FSHD express a protein, named DUX4, which interferes in an unknown way with muscle maintenance.

"We felt that an animal model would advance progress towards a cure for FSHD for two reasons," said Michael Kyba, Ph.D., lead researcher and associate professor in the Medical School at the University of Minnesota. "First, it would allow us to understand what DUX4 does in muscle to cause muscle loss, and second, it would provide a system in which efficacy of potential therapies could be evaluated before they are tested in humans."

The mouse model designed by Kyba and his team allows the disease-associated DUX4 protein to be produced when mice are treated with doxycycline. The amount of DUX4 can be controlled by varying the dose of doxycycline. Researchers expected the mice to be normal until they were treated with doxycycline, however even when DUX4 was in the "off" state, mice showed profound disease effects, some related to FSHD as well as additional effects not seen in FSHD patients.

"Nothing is black and white in biology," says Kyba. "No gene is truly off, and the off state in this case resulted in enough leaky DUX4 expression to kill the mice."

The team solved this problem by moving the gene to the X chromosome. Because females have two X chromosomes, only one of which is actively used in each cell, the female mice were healthy enough to enable the DUX4 mice to reproduce even though all of their male progeny with the DUX4 gene died. The fact that multiple levels of turning off the DUX4 gene were necessary to allow mice to survive showed that DUX4 is more toxic than researchers expected.

"We learned a lot with this animal model, but perhaps the most important finding was what we observed when we transplanted skeletal muscle stem cells," said Kyba.

The team could isolate muscle stem cells from the male mice before they died and when they transplanted them into muscle-damaged recipient mice, they found that the stem cells were able to regenerate new muscle. But when even low doses of doxycycline were given to the recipients to turn on DUX4 in the skeletal muscle stem cells, muscle regeneration was severely impaired. This suggested that a defect in skeletal muscle regeneration may contribute to muscle loss in FSHD. The finding also provides a very sensitive quantitative readout of DUX4 activity.

"This assay, in which we count new muscle fibers produced by transplanted DUX4-expressing muscle stem cells, will be very useful in testing therapeutics," says Kyba. "Drugs that target DUX4 should allow these transplanted DUX4-expressing muscle stem cells to make more new muscle fibers."

As researchers develop drugs that target the DUX4 protein, the hope is that these mice will be used to determine whether such drugs can reach skeletal muscle and allow muscle damage to be repaired, even in the presence of DUX4.


Story Source:

The above story is based on materials provided by University of Minnesota Academic Health Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Abhijit Dandapat, Darko Bosnakovski, LynnM. Hartweck, RobertW. Arpke, KristenA. Baltgalvis, Derek Vang, June Baik, Radbod Darabi, RitaC.R. Perlingeiro, F.Kent Hamra, Kalpna Gupta, DawnA. Lowe, Michael Kyba. Dominant Lethal Pathologies in Male Mice Engineered to Contain an X-Linked DUX4 Transgene. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.07.056

Cite This Page:

University of Minnesota Academic Health Center. "Researchers find animal model for understudied type of muscular dystrophy." ScienceDaily. ScienceDaily, 28 August 2014. <www.sciencedaily.com/releases/2014/08/140828135851.htm>.
University of Minnesota Academic Health Center. (2014, August 28). Researchers find animal model for understudied type of muscular dystrophy. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/08/140828135851.htm
University of Minnesota Academic Health Center. "Researchers find animal model for understudied type of muscular dystrophy." ScienceDaily. www.sciencedaily.com/releases/2014/08/140828135851.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins