Featured Research

from universities, journals, and other organizations

New way to diagnose malaria by detecting parasite's waste in infected blood cells

Date:
August 31, 2014
Source:
Massachusetts Institute of Technology
Summary:
A technique that can detect malarial parasite's waste in infected blood cells has been developed by researchers. "There is real potential to make this into a field-deployable system, especially since you don't need any kind of labels or dye. It's based on a naturally occurring biomarker that does not require any biochemical processing of samples" says one of the senior authors of a paper.

Red blood cells from a patient infected with Plasmodium falciparum.
Credit: Osaro Erhabor

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and looks under a microscope for the Plasmodium parasite, which causes the disease. This approach gives an accurate count of how many parasites are in the blood -- an important measure of disease severity -- but is not ideal because there is potential for human error.

Related Articles


A research team from the Singapore-MIT Alliance for Research and Technology (SMART) has now come up with a possible alternative. The researchers have devised a way to use magnetic resonance relaxometry (MRR), a close cousin of magnetic resonance imaging (MRI), to detect a parasitic waste product in the blood of infected patients. This technique could offer a more reliable way to detect malaria, says Jongyoon Han, a professor of electrical engineering and biological engineering at MIT.

"There is real potential to make this into a field-deployable system, especially since you don't need any kind of labels or dye. It's based on a naturally occurring biomarker that does not require any biochemical processing of samples" says Han, one of the senior authors of a paper describing the technique in the Aug. 31 issue of Nature Medicine.

Peter Rainer Preiser of SMART and Nanyang Technical University in Singapore is also a senior author. The paper's lead author is Weng Kung Peng, a research scientist at SMART.

Hunting malaria with magnets

With the traditional blood-smear technique, a technician stains the blood with a reagent that dyes cell nuclei. Red blood cells don't have nuclei, so any that show up are presumed to belong to parasite cells. However, the technology and expertise needed to identify the parasite are not always available in some of the regions most affected by malaria, and technicians don't always agree in their interpretations of the smears, Han says.

"There's a lot of human-to-human variation regarding what counts as infected red blood cells versus some dust particles stuck on the plate. It really takes a lot of practice," he says.

The new SMART system detects a parasitic waste product called hemozoin. When the parasites infect red blood cells, they feed on the nutrient-rich hemoglobin carried by the cells. As hemoglobin breaks down, it releases iron, which can be toxic, so the parasite converts the iron into hemozoin -- a weakly paramagnetic crystallite.

Those crystals interfere with the normal magnetic spins of hydrogen atoms. When exposed to a powerful magnetic field, hydrogen atoms align their spins in the same direction. When a second, smaller field perturbs the atoms, they should all change their spins in synchrony -- but if another magnetic particle, such as hemozoin, is present, this synchrony is disrupted through a process called relaxation. The more magnetic particles are present, the more quickly the synchrony is disrupted.

"What we are trying to really measure is how the hydrogen's nuclear magnetic resonance is affected by the proximity of other magnetic particles," Han says.

For this study, the researchers used a 0.5-tesla magnet, much less expensive and powerful than the 2- or 3-tesla magnets typically required for MRI diagnostic imaging, which can cost up to $2 million. The current device prototype is small enough to sit on a table or lab bench, but the team is also working on a portable version that is about the size of a small electronic tablet.

After taking a blood sample and spinning it down to concentrate the red blood cells, the sample analysis takes less than a minute. Only about 10 microliters of blood is required, which can be obtained with a finger prick, making the procedure minimally invasive and much easier for health care workers than drawing blood intravenously.

"This system can be built at a very low cost, relative to the million-dollar MRI machines used in a hospital," Peng says. "Furthermore, since this technique does not rely on expensive labeling with chemical reagents, we are able to get each diagnostic test done at a cost of less than 10 cents."

Tracking infection

Hemozoin crystals are produced in all four stages of malaria infection, including the earliest stages, and are generated by all known species of the Plasmodium parasite. Also, the amount of hemozoin can reveal how severe the infection is, or whether it is responding to treatment. "There are a lot of scenarios where you want to see the number, rather than a yes or no answer," Han says.

In this paper, the researchers showed that they could detect Plasmodium falciparum, the most dangerous form of the parasite, in blood cells grown in the lab. They also detected the parasite in red blood cells from mice infected with Plasmodium berghei.

The researchers are launching a company to make this technology available at an affordable price. The team is also running field tests in Southeast Asia and is exploring powering the device on solar energy, an important consideration for poor rural areas.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Weng Kung Peng, Tian Fook Kong, Chee Sheng Ng, Lan Chen, Yongxue Huang, Ali Asgar S Bhagat, Nam-Trung Nguyen, Peter Rainer Preiser, Jongyoon Han. Micromagnetic resonance relaxometry for rapid label-free malaria diagnosis. Nature Medicine, 2014; DOI: 10.1038/nm.3622

Cite This Page:

Massachusetts Institute of Technology. "New way to diagnose malaria by detecting parasite's waste in infected blood cells." ScienceDaily. ScienceDaily, 31 August 2014. <www.sciencedaily.com/releases/2014/08/140831150339.htm>.
Massachusetts Institute of Technology. (2014, August 31). New way to diagnose malaria by detecting parasite's waste in infected blood cells. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/08/140831150339.htm
Massachusetts Institute of Technology. "New way to diagnose malaria by detecting parasite's waste in infected blood cells." ScienceDaily. www.sciencedaily.com/releases/2014/08/140831150339.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins