New! Sign up for our free email newsletter.
Science News
from research organizations

Advanced Systems Aim To Keep New Cars Running Clean

Date:
July 31, 2000
Source:
Purdue University
Summary:
Purdue University and Ford Motor Co. are teaming up to develop an advanced, onboard electronic system designed to monitor the health of aging engines and keep cars in compliance with stringent exhaust-emission standards.
Share:
FULL STORY

WEST LAFAYETTE, Ind. – Purdue University and Ford Motor Co. are teaming up to develop an advanced, onboard electronic system designed to monitor the health of aging engines and keep cars in compliance with stringent exhaust-emission standards.

Findings from the research ultimately could make possible the creation of sophisticated diagnostic systems that not only warn the driver about impending engine failures but also identify the likely sources of the problems, says Matthew Franchek, an associate professor of mechanical engineering at Purdue.

The technology works by using newly developed computer models to better control how much fuel is delivered to the engine. It has the potential to eliminate certain expensive and time-consuming steps now needed to develop electronic-fueling controls for new engines.

A paper about the fueling control research will be presented on Aug. 23, during the 5th International Symposium on Advanced Vehicle Control, a gathering of researchers specializing in automotive and rail technologies, at the University of Michigan in Ann Arbor.

Cars equipped with modern electronic control systems are able to meet increasingly strict pollution standards by automatically adjusting how much fuel is delivered to the engine. The control system is said to "adapt" the engine fueling to changing situations, such as climbing steep hills, variations in driving speeds and sudden accelerations. At the heart of this adaptive-fueling control system are electronic chips that have been carefully programmed to deliver the right amount of fuel to the engine, depending on how much air it is using. With conventional technology, automotive technicians and engineers calibrate these chips for each line of new engines to precisely meter the amount of fuel for a wide range of driving conditions.

When this "engine mapping" process is completed, the electronic-control system will determine how much gasoline the fuel injectors will deliver to the cylinders as the car travels down a highway, idles at a red light or labors up a steep incline. The ratio of air to fuel is tightly controlled to meet emission standards regardless of the driving conditions.

"It takes a long time to map an engine," Franchek says. "There are thousands of parameters to calibrate in an engine-control system, including transmission, fueling, idle speed, diagnostics, everything that the engine does."

The control technology being developed at Purdue promises to eliminate the engine-mapping process altogether, saving time and money by using newly developed mathematical models.

In addition to the engine-mapping requirement, current technology has another drawback: as an engine ages its performance no longer matches the carefully calibrated data programmed into the electronic control system. Clogged fuel injectors, the changing performance of engine sensors and a variety of age-related factors conspire to foul up the precise fuel-to-air ratios needed to meet pollution standards, causing the car's tailpipe emissions to increase.

In an attempt to correct the emissions, conventional electronic systems try to assign a root cause of the fueling-control errors so that the system's software can adapt. Based on the root-cause assignment, the fueling control system will correct itself by changing the amount of gasoline being injected into the cylinders. Unfortunately, the root cause assigned by the system is often inaccurate. Consequently, the corrective action is wrong.

The fueling control system being developed at Purdue is now being extended to enable car makers to overcome that problem by more accurately assessing the root causes behind changing engine performance. A more accurate assessment makes the system better able to adapt to changes in aging engines, while also reducing maintenance costs by automatically keeping the engine running smoothly, Franchek says.

"In the end, the fueling software will adapt itself to deliver fueling to the correct value," says Franchek, noting that the system is designed to last over the life of the engine.


Story Source:

Materials provided by Purdue University. Note: Content may be edited for style and length.


Cite This Page:

Purdue University. "Advanced Systems Aim To Keep New Cars Running Clean." ScienceDaily. ScienceDaily, 31 July 2000. <www.sciencedaily.com/releases/2000/07/000731073642.htm>.
Purdue University. (2000, July 31). Advanced Systems Aim To Keep New Cars Running Clean. ScienceDaily. Retrieved November 4, 2024 from www.sciencedaily.com/releases/2000/07/000731073642.htm
Purdue University. "Advanced Systems Aim To Keep New Cars Running Clean." ScienceDaily. www.sciencedaily.com/releases/2000/07/000731073642.htm (accessed November 4, 2024).

Explore More

from ScienceDaily

RELATED STORIES