Science News
from research organizations

New Composite Material Is Almost Better Than Mother-of-pearl

March 10, 2008
ETH Zurich
Strong, tough but light is the rare but desired combination of properties for numerous artificial materials. Now a new material is similar to natural mother-of-pearl, but twice as strong. Nacre, or mother-of-pearl, is one of nature's outstanding examples of a durable brick and mortar structure.


Researchers in ETH Zurich’s Department of Materials (D-MATL) have developed a new nacre-like composite that is twice the strength of naturally-occuring mother-of-pearl. Stronger ceramic platelets combined with ductile biopolymer Chitosan have created composites capable of withstanding a deformation of 25% before rupturing.

Nacre, or mother-of-pearl, is one of nature’s outstanding examples of a durable brick and mortar structure. Made of stiff, inorganic aragonite platelets and ductile biopolymers, the material combines toughness with a surprisingly high degree of strength. The researchers, led by Ludwig Gauckler, Professor of Non-mettalic Inorganic Materials have shown that ceramic alumina platelets and biopolymer Chitosan can be assembled layer-by-layer to form thin foils of a composite material exhibiting a nacre-like structure.

Nearly better than the original

In comparison to the stronger composite material developed, natural nacre deforms only one to two percent before reaching breaking point. Because it is not yet possible to obtain defect-free structures of such high platelet content as nacre, the stiffness of the new composite is five to seven times less than that of its natural counterpart. However, the new composite retains most of the ductility of polymer matrix composites, materials which can be used at high temperatures and are stronger, lighter and more resistant to corrosion.

Conventional thin foils of other materials such as metals, polymers or fiber-reinforced composites may be up to one order of magnitude stronger and stiffer, but few materials reach the same combination of strength and ductibility per unit weight as the new nacre-like foils developed by the ETH Zurich team.

Development of the new nacre-like composite has opened the door to further research, such as manufacturing the foils at high speed. The ETH Zurich team is also exploring the use of different “glues” and platelets of different geometry in order to improve the composite’s mechanical properties. As well under study is the optimization of the platelet-glue interface. This research is currently being carried out in collaboration with Professor J. Woltersdorf and Dr. E. Pippel at the Max Planck Institute for Microstructure Physics in Halle, Germany and the polymer groups at ETH Zurich.

Further research underway

ETH Zurich’s research establishes concepts for tailoring the mechanical properties of composite materials. The combination of nature’s smart structural design with the enhanced properties of artificial building blocks should make possibe the creation of even more composites with similar combinations of mechanical properties.

Future research will address achieving ever-thinner polymer layers and ceramic platelets while maintaining the integrity of the mechanical concept of nacre, as well as researching whether the polymer layer can approach atomic thickness yet keep the nacre-like behaviour of the composite.

Journal reference: Bonderer, Lorenz J., André R. Studart & Ludwig J. Gauckler (2008): Bio-inspired Design and Assembly of Platelet Reinforced Polymer Films, Science Vol. 319, 1069 (2008); DOI: 10.1126/science. 1148726


Story Source:

Materials provided by ETH Zurich. Note: Content may be edited for style and length.

Cite This Page:

ETH Zurich. "New Composite Material Is Almost Better Than Mother-of-pearl." ScienceDaily. ScienceDaily, 10 March 2008. <>.
ETH Zurich. (2008, March 10). New Composite Material Is Almost Better Than Mother-of-pearl. ScienceDaily. Retrieved October 2, 2023 from
ETH Zurich. "New Composite Material Is Almost Better Than Mother-of-pearl." ScienceDaily. (accessed October 2, 2023).

Explore More
from ScienceDaily