New! Sign up for our free email newsletter.
Science News
from research organizations

Possible Abnormality In Fundamental Building Block Of Einstein's Theory Of Relativity

Date:
January 6, 2009
Source:
Indiana University
Summary:
Physicists have developed a promising new way to identify a possible abnormality in a fundamental building block of Einstein's theory of relativity known as "Lorentz invariance." If confirmed, the abnormality would disprove the basic tenet that the laws of physics remain the same for any two objects traveling at a constant speed or rotated relative to one another.
Share:
FULL STORY

Physicists at Indiana University have developed a promising new way to identify a possible abnormality in a fundamental building block of Einstein's theory of relativity known as "Lorentz invariance." If confirmed, the abnormality would disprove the basic tenet that the laws of physics remain the same for any two objects traveling at a constant speed or rotated relative to one another.

IU distinguished physics professor Alan Kostelecky and graduate student Jay Tasson take on the long-held notion of the exact symmetry promulgated in Einstein's 1905 theory and show in a paper to be published in Physical Review Letters that there may be unexpected violations of Lorentz invariance that can be detected in specialized experiments.

"It is surprising and delightful that comparatively large relativity violations could still be awaiting discovery despite a century of precision testing," said Kostelecky. "Discovering them would be like finding a camel in a haystack instead of a needle."

If the findings help reveal the first evidence of Lorentz violations, it would prove relativity is not exact. Space-time would not look the same in all directions and there would be measurable relativity violations, however minuscule.

The violations can be understood as preferred directions in empty space-time caused by a mesh-like vacuum of background fields. These would be separate from the entirety of known particles and forces, which are explained by a theory called the Standard Model that includes Einstein's theory of relativity.

The background fields are predicted by a generalization of this theory called the Standard Model Extension, developed by Kostelecky to describe all hypothetical relativity violations.

Hard to detect, each background field offers its own universal standard for determining whether or not an object is moving, or in which direction it is going. If a field interacts with certain particles, then the behavior of those particles changes and can reveal the relativity violations caused by the field. Gravity distorts the fields, and this produces particle behaviors that can reveal otherwise hidden violations.

The new violations change the gravitational properties of objects depending on their motion and composition. Objects on the Earth are always moving differently in different seasons because the Earth revolves around the Sun, so apples could fall faster in some seasons than others. Also, different objects like apples and oranges may fall differently.

"No dedicated experiment has yet sought a seasonal variation of the rate of an object's fall in the Earth's gravity," said Kostelecky. "Since Newton's time over 300 years ago, apples have been assumed to fall at the same rate in the summer and the winter."

Spotting these minute variances is another matter as the differences in rate of fall would be tiny because gravity is a weak force. The new paper catalogues possible experiments that could detect the effects. Among them are ones studying gravitational properties of matter on the Earth and in space.

The Standard Model Extension predicts that a particle and an antiparticle would interact differently with the background fields, which means matter and antimatter would feel gravity differently. So, an apple and an anti-apple could fall at different rates, too.

"The gravitational properties of antimatter remain largely unexplored," said Kostelecky. "If an apple and an anti-apple were dropped simultaneously from the leaning Tower of Pisa, nobody knows whether they would hit the ground at the same or different times."

The research was funded by the U.S. Department of Energy's Office of Science and the abstract and article can be viewed at: http://link.aps.org/abstract/PRL/v102/e010402.

Animation using Kostelecky's Standard Model Extenstion to predict how apples might fall differently can be viewed at http://www.physics.indiana.edu/~kostelec/movies/agrav3.avi.


Story Source:

Materials provided by Indiana University. Note: Content may be edited for style and length.


Journal Reference:

  1. V. Alan Kostelecký and Jay D. Tasson. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Physical Review Letters, January 9, 2009 DOI: 10.1103/PhysRevLett.102.010402

Cite This Page:

Indiana University. "Possible Abnormality In Fundamental Building Block Of Einstein's Theory Of Relativity." ScienceDaily. ScienceDaily, 6 January 2009. <www.sciencedaily.com/releases/2009/01/090105150837.htm>.
Indiana University. (2009, January 6). Possible Abnormality In Fundamental Building Block Of Einstein's Theory Of Relativity. ScienceDaily. Retrieved April 25, 2024 from www.sciencedaily.com/releases/2009/01/090105150837.htm
Indiana University. "Possible Abnormality In Fundamental Building Block Of Einstein's Theory Of Relativity." ScienceDaily. www.sciencedaily.com/releases/2009/01/090105150837.htm (accessed April 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES