New! Sign up for our free email newsletter.
Science News
from research organizations

Cancer risk of backscatter airport scanners is low, analysis suggests

Date:
March 28, 2011
Source:
University of California - San Francisco
Summary:
Calculations by researchers estimate that the cancer risk associated with one type of airport security scanners is low based on the amount of radiation these devices emit, as long as they are operated and function correctly.
Share:
FULL STORY

Calculations by researchers at the University of California, San Francisco and the University of California, Berkeley estimate that the cancer risk associated with one type of airport security scanners is low based on the amount of radiation these devices emit, as long as they are operated and function correctly.

"The doses are low -- extremely low," said Rebecca Smith-Bindman, MD, a professor of radiology at UCSF, who made the calculations with Pratik Mehta, an undergraduate at UC-Berkeley. "The amount of radiation in these scans is so low that you don't have to be concerned about it."

The amount of radiation absorbed in a single scan, they say, is about the same as what the average person absorbs every three to nine minutes on the ground -- just from being alive. (The human body naturally absorbs radiation all the time from such sources as the sun and Earth). In their analysis, Smith-Bindman and Mehta also determined that the average person would absorb 100 times more radiation flying on an airplane than standing in a scanner.

At the same time, Smith-Bindman cautions that the analysis is based on the assumption that the backscatter devices work perfectly and are used as designed.

How certain can Americans be that there are not as-yet-unknown safety risks? For instance, is there potential for software glitches, human errors or mechanical malfunctions that could cause the scanners to exceed their design specifications and expose people to higher levels of radiation?

Questions like these are valid, said Smith-Bindman. She concludes that it would be prudent for the U.S. Transportation Security Administration (TSA) to allow further testing and monitoring of the devices in the field. Currently the TSA does not permit scientists to have access to the scanners to do independent testing.

"Given how many people are being exposed to these machines," she said, "I would just want to make sure no possible unanticipated error could happen."

The analysis appears in a special article published online in the journal Archives of Internal Medicine.

Scanners to Double in Number this Year

Ever since a failed bombing attempt in December of 2009, when a passenger on a Detroit-bound flight successfully boarded a plane with explosives hidden in his underwear, "backscatter" radiation scanners have been deployed more and more in airports across the country.

About 500 of these scanners have appeared in 78 U.S. airports so far, and the federal government ultimately has plans to double the number of them by the end of this year, said Smith-Bindman. Backscatter scanners are different from millimeter wave scanners, also used in airport security, which image the body using a different type of energy than ionizing radiation.

Because backscatter scanners use low energy X-rays to penetrate clothing, image the human body and reveal hidden articles underneath, they have drawn public scrutiny about privacy concerns and potential health risks.

X-ray radiation can damage DNA, causing a cancer risk with exposure to X-rays from any source. Taking the available published specifications for the backscatter instruments, however, Smith-Bindman and Mehta determined that the amount of radiation absorbed from routine scanning is relatively low and the added risk of developing cancers is likewise low.

About 100 million passengers take 750 million flights in the United States each year, and Smith-Bindman and Mehta calculated that fully implementing backscatter scanners would not significantly increase the lifetime risk of cancer for travelers.

They also looked at the U.S. population that may be at greatest risk: children. Because children are expected to live longer than adults, their lifetime risk of cancer would be higher.

Smith-Bindman and Mehta focused on a subset of children, considering five-year-old girls who fly round trip once a week. Even within this frequent flying group, they estimated that backscatter scanners would not significantly increase their lifetime risk of cancer.


Story Source:

Materials provided by University of California - San Francisco. Note: Content may be edited for style and length.


Journal Reference:

  1. Pratik Mehta; Rebecca Smith-Bindman. Airport Full-Body Screening: What Is the Risk? Archives of Internal Medicine, 2011; DOI: 10.1001/archinternmed.2011.105

Cite This Page:

University of California - San Francisco. "Cancer risk of backscatter airport scanners is low, analysis suggests." ScienceDaily. ScienceDaily, 28 March 2011. <www.sciencedaily.com/releases/2011/03/110328161852.htm>.
University of California - San Francisco. (2011, March 28). Cancer risk of backscatter airport scanners is low, analysis suggests. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2011/03/110328161852.htm
University of California - San Francisco. "Cancer risk of backscatter airport scanners is low, analysis suggests." ScienceDaily. www.sciencedaily.com/releases/2011/03/110328161852.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES