New! Sign up for our free email newsletter.
Science News
from research organizations

Caught in the act: Herschel detects gigantic storms sweeping entire galaxies clean

Date:
May 9, 2011
Source:
Max-Planck-Institut für extraterrestrische Physik (MPE)
Summary:
With observations the Herschel space observatory, scientists have found gigantic storms of molecular gas gusting in the centres of many galaxies. Some of these massive outflows reach velocities of more than 1000 kilometers per second -- thousands of times faster than in terrestrial hurricanes. The observations show that the more active galaxies contain stronger winds, which can blow away the entire gas reservoir in a galaxy, thereby inhibiting both further star formation and the growth of the central black hole. This finding is the first conclusive evidence for the importance of galactic winds in the evolution of galaxies.
Share:
FULL STORY

With observations from the PACS instrument on board the ESA Herschel space observatory, an international team of scientists led by the Max Planck Institute for Extraterrestrial Physics has found gigantic storms of molecular gas gusting in the centres of many galaxies.

Some of these massive outflows reach velocities of more than 1000 kilometres per second, i.e. thousands of times faster than in terrestrial hurricanes. The observations show that the more active galaxies contain stronger winds, which can blow away the entire gas reservoir in a galaxy, thereby inhibiting both further star formation and the growth of the central black hole. This finding is the first conclusive evidence for the importance of galactic winds in the evolution of galaxies.

In the distant and therefore younger Universe, many galaxies show much more activity than our Milky Way today. In commonly accepted evolutionary scenarios gas-rich galaxies merge, which triggers increased star formation ("starburst" galaxies) as well as the growth of supermassive black holes at their centres. This increased activity, however, seems to cease fairly suddenly, effectively stalling star formation and further growth of the black hole in as little as a few million years' time. What processes could be responsible for removing all the raw material powering this activity -- around a billion solar masses -- in such a (cosmologically) short timespan?

The solution to this riddle could be powerful winds that blow gas outwards from the centre of the galaxy. Powered by newly formed stars, shocks from stellar explosions or by the Black Hole in the galaxy's centre, these storms would remove all the gas supply from the galaxy thereby halting the same mechanisms that produced them in the first place.

"Outflows are key features in models of galactic formation and evolution, but prior to our work no decisive evidence of their active role in such processes had been gathered," explains Eckhard Sturm from the Max Planck Institute for Extraterrestrial Physics (MPE). Sturm led a study of ultra-luminous infrared galaxies with the PACS instrument on board the Herschel space observatory, which revealed massive outflows of molecular gas. Almost all previous observations dealt mainly with neutral and ionised gas, which does not contribute to the formation of stars.

"By detecting outflows in cold molecular gas from which stars are born, we can finally witness their direct impact on star formation," Sturm adds. "Star formation stalls as the gas supply is blown out of the centres of the galaxies with a rate of up to a thousand solar masses per year."

However, the observations not only reveal an intermediate stage of galaxy evolution, from disc galaxies with many young stars and a large gas fraction to elliptical galaxies with old stellar populations and little gas. In addition, they can explain another empirical property: The mass of the Black Hole in the centre and the mass of stars in the inner regions of a galaxy seem to correlate. Such a correlation is a natural consequence of the newly found galactic outflows as they remove the common gas reservoir thus inhibiting both star formation and the growth of the Black Hole.

"Herschel's sensitivity enabled us to detect these gigantic galactic storms, and to demonstrate, for the first time, that they may be strong enough to shut down stellar production entirely," says co-author Albrecht Poglitsch, also from MPE and the Principal Investigator of PACS.

The sample of galaxies observed is still too small to pin down the driving force behind these outflows. The first results seem to indicate that the galaxies fall in two categories: starburst-dominated objects loose material of up to a few hundred solar masses per year which is similar to their star formation rate; with velocities of a few hundred kilometres per second these outflows are probably driven by radiation pressure from starbursts or supernovae explosions. Galaxies dominated by the activity of the black hole in their centre loose material at much higher rates, up to a thousand solar masses per year or more; with velocities around 1000 kilometres per second these outflows are probably powered mostly by radiation pressure from the active galactic nucleus. To confirm these first conclusions and study potential trends in the outflow characteristics, the Herschel-PACS observations will continue to cover a much larger sample of galaxies.


Story Source:

Materials provided by Max-Planck-Institut für extraterrestrische Physik (MPE). Note: Content may be edited for style and length.


Journal Reference:

  1. E. Sturm, E. González-Alfonso, S. Veilleux, J. Fischer, J. Graciá-Carpio, S. Hailey-Dunsheath, A. Contursi, A. Poglitsch, A. Sternberg, R. Davies, R. Genzel, D. Lutz, L. Tacconi, A. Verma, R. Maiolino, J. A. de Jong. Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS. The Astrophysical Journal, 2011; 733 (1): L16 DOI: 10.1088/2041-8205/733/1/L16

Cite This Page:

Max-Planck-Institut für extraterrestrische Physik (MPE). "Caught in the act: Herschel detects gigantic storms sweeping entire galaxies clean." ScienceDaily. ScienceDaily, 9 May 2011. <www.sciencedaily.com/releases/2011/05/110509091415.htm>.
Max-Planck-Institut für extraterrestrische Physik (MPE). (2011, May 9). Caught in the act: Herschel detects gigantic storms sweeping entire galaxies clean. ScienceDaily. Retrieved December 8, 2024 from www.sciencedaily.com/releases/2011/05/110509091415.htm
Max-Planck-Institut für extraterrestrische Physik (MPE). "Caught in the act: Herschel detects gigantic storms sweeping entire galaxies clean." ScienceDaily. www.sciencedaily.com/releases/2011/05/110509091415.htm (accessed December 8, 2024).

Explore More

from ScienceDaily

RELATED STORIES