Effects of weather and sea-level rise on Florida's coast
- Date:
- January 26, 2012
- Source:
- University of Miami
- Summary:
- Scientists have developed a novel computer model describing how future hurricanes and sea level rise may trigger changes to South Florida's native coastal forests.
- Share:
The key to understanding how future hurricanes and sea level rise may trigger changes to South Florida's native coastal forests lurks below the surface, according to a new model linking coastal forests to groundwater. Just inland from the familiar mangroves that line the coasts are hardwood hammocks that are sensitive to salinity changes in water found in the soils.
University of Miami ecologist Donald L. DeAngelis, who is also a researcher for the U.S Geological Survey (USGS), has worked with collaborators to develop a novel computer model describing the underlying forces that maintain this vegetative boundary. The findings, published in the current issue of the journal Landscape Ecology, indicate that large pulses of saline water into the hammock vegetation may cause mangroves to invade areas now populated by hardwood hammocks.
"A high level of salt in the soil favors the mangroves and stresses the hardwoods," says DeAngelis, professor in the Department of Biology in UM's College of Arts and Sciences and one of the principal investigators of the project "Hardwood hammocks are a unique feature of the Everglades. They are home to many species, and if they decrease in numbers, that will mean a loss of habitat for some organisms."
During storm surges, the salty winds and waves rush into areas of brackish water. The likelihood of such saltwater over wash from the coast is expected to increase as sea level rise affects the natural coastal processes in the region.
The study is one of the first to couple vegetation dynamics with hydrology and salinity of the area in order to study the factors affecting the forest boundary. The work reveals that the sharp mangrove-hammock boundary, or ecotone, is defined by a combination of factors such as water levels during the dry season, tides, changes in the land's features, and the ability of trees to alter the environment to their benefit (a process known as positive feedback).
"Ecotones are of great interest to ecologists because many species like to live along the edges between different vegetation types, so you can get rich diversity in those areas," says Jiang Jiang, doctoral student in UM's Department of Biology and co-author of the study.
Changes in water management, such as the expected increase in freshwater from the implementation of the Comprehensive Everglades Restoration Plan, may help offset the possible effects caused by future saltwater over-wash and inundation.
"The USGS project that we are working on will include a big landscape hydrology model that will predict the freshwater flow into the southern Everglades and at the same time take into account sea level rise," says DeAngelis.
The study, supported and funded by the USGS, lays the groundwork for a larger investigation in which the agency is developing models to look at how sea level rise will affect coastal regions in South Florida. Other co-authors of the study include Thomas J. Smith III, ecologist at the USGS and co-principal investigator of the project; Su Yean Teh, lecturer at the School of Mathematical Sciences, Universiti Sains Malaysia; and Hock-Lye Koh, professor at the School of Civil Engineering, Universiti Sains Malaysia.
The scientists hope to extend the application of this model to include other ecotones and other parts of the world that experience frequent storm surges. The researchers would like to be able to predict if saltwater intrusion will have a long-lasting effect on vegetation, and on freshwater supply.
Story Source:
Materials provided by University of Miami. Note: Content may be edited for style and length.
Journal Reference:
- Jiang Jiang, Donald L. DeAngelis, Thomas J. Smith, Su Yean Teh, Hock-Lye Koh. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: a model study. Landscape Ecology, 2011; 27 (1): 109 DOI: 10.1007/s10980-011-9689-9
Cite This Page: