Science News
from research organizations

'Atomic chicken-wire' is key to faster DNA sequencing

Date:
March 30, 2015
Source:
University of Melbourne
Summary:
An unusual and very exciting form of carbon -- that can be created by drawing on paper -- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionize medical research and testing.
Share:
FULL STORY

Graphene.
Credit: Image courtesy of University of Melbourne

An unusual and very exciting form of carbon -- that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research and testing.

Led by Dr Jiri Cervenka and PhD candidate Nikolai Dontschuk from the University of Melbourne, the study also included scientists from the Australian Synchrotron and La Trobe University and is published in Nature Communications.

The Australian researchers have shown that graphene- a one-atom thick sheet of hexagonally arranged carbon, shaped like chicken wire -- can detect the four nucleobases that make up DNA (cytosine, guanine, adenine and thymine).

A unique combination of the four nucleobases makes up the individual DNA sequence of a gene. Currently, DNA sequencing is a fundamental tool for medical diagnostics, forensic testing and medical and biological research.

The use of graphene to electrically sequence DNA promises to improve the speed, throughput, reliability and accuracy whilst reducing the price compared to current techniques said Nikolai Dontschuk from the University of Melbourne.

"We found that each nucleobase influenced the electronic structure of graphene in a measurably different way," said Mr Dontschuk.

"When used in conjunction with a nanopore (a tiny hole), a single DNA molecule would pass through the graphene-based electrical sensor -- like a single string of beads passing through one section of tiny chicken wire- enabling real-time, high-throughput sequencing of a single DNA molecule."

The research team conducted the first experiments to combine in situ electrical measurements of graphene-based field effect transistors (GFET) with photoemission spectroscopy at the soft x-ray spectroscopy beamline at the Synchrotron.

After comparing the experimental and synchrotron results, the team predicted that single-molecule sensing of guanine, cytosine and thymine by bulk graphene devices could be achieved.


Story Source:

Materials provided by University of Melbourne. Note: Content may be edited for style and length.


Journal Reference:

  1. Nikolai Dontschuk, Alastair Stacey, Anton Tadich, Kevin J. Rietwyk, Alex Schenk, Mark T. Edmonds, Olga Shimoni, Chris I. Pakes, Steven Prawer, Jiri Cervenka. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nature Communications, 2015; 6: 6563 DOI: 10.1038/ncomms7563

Cite This Page:

University of Melbourne. "'Atomic chicken-wire' is key to faster DNA sequencing." ScienceDaily. ScienceDaily, 30 March 2015. <www.sciencedaily.com/releases/2015/03/150330095403.htm>.
University of Melbourne. (2015, March 30). 'Atomic chicken-wire' is key to faster DNA sequencing. ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2015/03/150330095403.htm
University of Melbourne. "'Atomic chicken-wire' is key to faster DNA sequencing." ScienceDaily. www.sciencedaily.com/releases/2015/03/150330095403.htm (accessed May 23, 2017).

RELATED STORIES