Science News
from research organizations

Existence of new quantum matter theoretically predicted

Date:
June 17, 2015
Source:
Aalto University
Summary:
Researchers have predicted, in theory, that superconducting surfaces can become topological superconductors when magnetic iron atoms are deposited on the surface in a regular pattern. They used the latest mathematical and physical models to predict the existence of a topological superconducting state on metallic superconducting surfaces and thin films.The results are important in the search for new quantum states and possible use in future electronics applications.
Share:
FULL STORY

The red arrows show magnetic atoms, such as iron, which form a regular structure on the surface of the superconducting metal. The topological superconducting area is surrounded by unidirectional edge states.
Credit: Courtesy od Aalto University

Finland's Aalto University researchers have succeeded in predicting, in theory, that superconducting surfaces can become topological superconductors when magnetic iron atoms are deposited on the surface in a regular pattern. They used the latest mathematical and physical models to predict the existence of a topological superconducting state on metallic superconducting surfaces and thin films. The results are important in the search for new quantum states and possible use in future electronics applications.

The results were recently published in the Physics Review Letters science journal.

The work examines the properties of superconductors in low temperatures. The results are important in the search for new quantum states and possible use in future electronics applications.

'We know that in a quantum state, electric current moves without resistance on the surfaces of superconducting metals. This is an interesting phenomenon that we wanted to study in more detail. Topological superconductors differ from normal ones in that they have a current constantly moving around their edges. This current contains exotic particles called Majorana fermions. We obtained reliable signals from these particles in tests performed at the end of last year,' explains Academy Research Fellow Teemu Ojanen from the Aalto University Low Temperature Laboratory in Finland.

'The edges of a topologically superconducting surface are unidirectional, and thus the current is only transported in a single direction. However, the number and direction of edge states can vary. This situation could be compared to a traffic circle in which the number of lanes and the direction can change,' continues Ojanen.

It has been theoretically predicted that Majorana fermions have properties that can help create complicated quantum states, for example, by braiding the particles around each other. The structures produced in this manner can be utilised for coding information and future applications likely include quantum computers.


Story Source:

Materials provided by Aalto University. Note: Content may be edited for style and length.


Journal Reference:

  1. Joel Röntynen, Teemu Ojanen. Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices. Physical Review Letters, 2015; 114 (23) DOI: 10.1103/PhysRevLett.114.236803

Cite This Page:

Aalto University. "Existence of new quantum matter theoretically predicted." ScienceDaily. ScienceDaily, 17 June 2015. <www.sciencedaily.com/releases/2015/06/150617091909.htm>.
Aalto University. (2015, June 17). Existence of new quantum matter theoretically predicted. ScienceDaily. Retrieved May 28, 2017 from www.sciencedaily.com/releases/2015/06/150617091909.htm
Aalto University. "Existence of new quantum matter theoretically predicted." ScienceDaily. www.sciencedaily.com/releases/2015/06/150617091909.htm (accessed May 28, 2017).

RELATED STORIES