Science News
from research organizations

Shrinking tumors with an RNA triple-helix hydrogel glue

Date:
December 7, 2015
Source:
Brigham and Women's Hospital
Summary:
An efficient and effective delivery vehicle for gene therapy has been developed by researchers who have used it to shrink tumors by nearly 90 percent in a pre-clinical model of triple-negative breast cancer.
Share:
FULL STORY

Researchers at Brigham and Women's Hospital (BWH) have developed an efficient and effective delivery vehicle for gene therapy, and have used it to shrink tumors by nearly 90 percent in a pre-clinical model of triple-negative breast cancer. The new technique uses a hydrogel -- a super-glue-like gel that spontaneously forms when two solutions mix -- and self-assembled nanoparticles consisting of two microRNAs that suppress and target tumor tissue. This platform can be injected locally, allowing the researchers to increase dosage at the site of the tumor while decreasing the risk of the therapy accumulating in the kidneys, liver or other organs. In mouse models, the adhesive containing self-assembled nanoparticles injected using this approach has been far more potent, selective and specific to tumor cells than conventional chemotherapeutic drugs and have lengthened survival time.

"Cancer is usually viewed as a systemic disease requiring systemic therapy but here we show that local therapy is actually very potent," said senior author Natalie Artzi, PhD, a researcher in the BWH Department of Medicine, Biomedical Engineering Division, and the Harvard-MIT Division for Health Sciences and Technology. "The results are outstanding and demonstrate the power of local, sustained delivery, and the promise of gene therapy in cancer treatment."

The researchers note that this approach can be used to deliver other combinations of microRNAs or other types of genetic material, including antisense DNA or small interfering RNA, to treat a wide-range of diseases. As a next step, the team will test the technique for biocompatibility and efficacy in larger animal models and will scale up their platform to screen for additional potentially therapeutic microRNAs and cancer therapies that can be combined to improve treatment.


Story Source:

Materials provided by Brigham and Women's Hospital. Note: Content may be edited for style and length.


Journal Reference:

  1. João Conde, Nuria Oliva, Mariana Atilano, Hyun Seok Song, Natalie Artzi. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nature Materials, 2015; DOI: 10.1038/NMAT4497

Cite This Page:

Brigham and Women's Hospital. "Shrinking tumors with an RNA triple-helix hydrogel glue." ScienceDaily. ScienceDaily, 7 December 2015. <www.sciencedaily.com/releases/2015/12/151207113746.htm>.
Brigham and Women's Hospital. (2015, December 7). Shrinking tumors with an RNA triple-helix hydrogel glue. ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2015/12/151207113746.htm
Brigham and Women's Hospital. "Shrinking tumors with an RNA triple-helix hydrogel glue." ScienceDaily. www.sciencedaily.com/releases/2015/12/151207113746.htm (accessed May 23, 2017).

RELATED STORIES