New! Sign up for our free email newsletter.
Science News
from research organizations

Bending hot molecules

New model for controlling hot molecules reactions, which are relevant to fusion, space exploration and planetary science

Date:
May 18, 2016
Source:
Springer
Summary:
Hot molecules are found in extreme environments such as the edges of fusion reactors. For simulations that e.g. help to understand the physics of planetary atmospheres, it is crucial to know how these molecules react. In a new study researchers reveal a method for controlling the likelihood that reactions between electrons and hot molecules occur, by altering the degree of bending the linear molecules.
Share:
FULL STORY

Hot molecules, which are found in extreme environments such as the edges of fusion reactors, are much more reactive than those used to understand reaction studies at ambient temperature. Detailed knowledge of their reactions is not only relevant to modelling nuclear fusion devices; it is also crucial in simulating the reaction that takes place on a spacecraft's heat shield at the moment when it re-enters Earth's atmosphere. Further, it can help us understand the physics and chemistry of planetary atmospheres. In a novel and comprehensive study just published in EPJ D, Masamitsu Hoshino from Sophia University, Tokyo, Japan, and colleagues reveal a method for controlling the likelihood that these reactions between electrons and hot molecules occur, by altering the degree of bending the linear molecules, modulated by reaching precisely defined temperatures.

In this new study, the authors chiefly rely on the new method of producing hot molecules with a sufficient number density and in a stable manner. It is used to predict the likelihood of an interaction between electrons and two types of hot molecules, namely carbonyl sulphide (COS) and carbon dioxide (CO2).

Specifically, their aim is to better understand how hot molecules enter so-called 'resonance' regimes, as they can collide with electrons at a specific speed, entering a state of resonance with the relevant properties of the molecules at the quantum level.

To do so, the authors investigated how vibrational excitation and de-excitation for COS and CO2 vary for different degrees of bending, that is, at different temperatures. The team found that, for both molecules, the resonant energy position decreases as the initial vibrational quantum -- which indicates the degree of bending -- increases. By contrast, the likelihood of an interaction increases for COS and decreases for CO2 as the initial vibrational quantum increases.


Story Source:

Materials provided by Springer. Note: Content may be edited for style and length.


Journal Reference:

  1. M. Hoshino, Y. Ishijima, H. Kato, D. Mogi, Y. Takahashi, K. Fukae, P. Limão-Vieira, H. Tanaka, and I. Shimamura. Change in resonance parameters of a linear molecule as it bends: Evidence in electron-impact vibrational transitions of hot COS and CO2 molecules. Eur. Phys. J. D, 2016 DOI: 10.1140/epjd/e2015-70085-9

Cite This Page:

Springer. "Bending hot molecules." ScienceDaily. ScienceDaily, 18 May 2016. <www.sciencedaily.com/releases/2016/05/160518120246.htm>.
Springer. (2016, May 18). Bending hot molecules. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2016/05/160518120246.htm
Springer. "Bending hot molecules." ScienceDaily. www.sciencedaily.com/releases/2016/05/160518120246.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES