Science News
from research organizations

Brazilian peppertree packs power to knock out antibiotic-resistant bacteria

Amazon traditional healers have used the plant for centuries to treat infections

Date:
February 10, 2017
Source:
Emory Health Sciences
Summary:
The red berries of the Brazilian peppertree -- a weedy, invasive species common in Florida -- contain an extract with the power to disarm dangerous antibiotic-resistant staph bacteria, scientists have discovered.
Share:
FULL STORY

The weed whisperer: Ethnobotanist Cassandra Quave undercovered a medicinal mechanism of berries from the Brazilian peppertree. The plant is a weedy invasive species in Florida, but valued by traditional healers in the Amazon as a treatment for infections.
Credit: Ann Bordon

The red berries of the Brazilian peppertree -- a weedy, invasive species common in Florida -- contain an extract with the power to disarm dangerous antibiotic-resistant staph bacteria, scientists at Emory University have discovered.

The journal Scientific Reports is publishing the finding, made in the lab of Cassandra Quave, an assistant professor in Emory's Center for the Study of Human Health and in the School of Medicine's Department of Dermatology.

"Traditional healers in the Amazon have used the Brazilian peppertree for hundreds of years to treat infections of the skin and soft tissues," Quave says. "We pulled apart the chemical ingredients of the berries and systematically tested them against disease-causing bacteria to uncover a medicinal mechanism of this plant."

The researchers showed that a refined, flavone-rich composition extracted from the berries inhibits formation of skin lesions in mice infected with methicillin-resistant Staphylococcus auereus (MRSA). The compound works not by killing the MRSA bacteria, but by repressing a gene that allows the bacteria cells to communicate with one another. Blocking that communication prevents the cells from taking collective action, a mechanism known as quorum quenching.

"It essentially disarms the MRSA bacteria, preventing it from excreting the toxins it uses as weapons to damage tissues," Quave says. "The body's normal immune system then stands a better chance of healing a wound."

The discovery may hold potential for new ways to treat and prevent antibiotic-resistant infections, a growing international problem. Antibiotic-resistant infections annually cause at least two million illnesses and 23,000 deaths in the United States, according to the Centers for Disease Control and Prevention. The United Nations last year called antibiotic-resistant infections a "fundamental threat" to global health and safety, citing estimates that they cause at least 700,000 deaths each year worldwide, with the potential to grow to 10 million deaths annually by 2050.

Blasting deadly bacteria with drugs designed to kill them is helping to fuel the problem of antibiotic resistance. Some of the stronger bacteria may survive these drug onslaughts and proliferate, passing on their genes to offspring and leading to the evolution of deadly "super bugs."

In contrast, the Brazilian peppertree extract works by simply disrupting the signaling of MRSA bacteria without killing it. The researchers also found that the extract does not harm the skin tissues of mice, or the normal, healthy bacteria found on skin.

"In some cases, you need to go in heavily with antibiotics to treat a patient," Quave says. "But instead of always setting a bomb off to kill an infection, there are situations where using an anti-virulence method may be just as effective, while also helping to restore balance to the health of a patient. More research is needed to better understand how we can best leverage anti-virulence therapeutics to improve patient outcomes."

Quave, a leader in the field of medical ethnobotany and a member of the Emory Antibiotic Resistance Center, studies how indigenous people incorporate plants in healing practices to uncover promising candidates for new drugs.

The Brazilian peppertree (Schinus terebinthifolia) is native to South America but thrives in subtropical climates. It is abundant in much of Florida, and has also crept into southern areas of Alabama, Georgia, Texas and California. Sometimes called the Florida holly or broad leaf peppertree, the woody plant forms dense thickets that crowd out native species.

"The Brazilian peppertree is not some exotic and rare plant found only on a remote mountaintop somewhere," Quave says. "It's a weed, and the bane of many a landowner in Florida."

From an ecological standpoint, it makes sense that weeds would have interesting chemistry, Quave adds. "Persistent, weedy plants tend to have a chemical advantage in their ecosystems, which help may protect them from diseases so they can more easily spread in a new environment."


Story Source:

Materials provided by Emory Health Sciences. Note: Content may be edited for style and length.


Journal Reference:

  1. Amelia Muhs, James T. Lyles, Corey P. Parlet, Kate Nelson, Jeffery S. Kavanaugh, Alexander R. Horswill, Cassandra L. Quave. Virulence Inhibitors from Brazilian Peppertree Block Quorum Sensing and Abate Dermonecrosis in Skin Infection Models. Scientific Reports, 2017; 7: 42275 DOI: 10.1038/srep42275

Cite This Page:

Emory Health Sciences. "Brazilian peppertree packs power to knock out antibiotic-resistant bacteria: Amazon traditional healers have used the plant for centuries to treat infections." ScienceDaily. ScienceDaily, 10 February 2017. <www.sciencedaily.com/releases/2017/02/170210084534.htm>.
Emory Health Sciences. (2017, February 10). Brazilian peppertree packs power to knock out antibiotic-resistant bacteria: Amazon traditional healers have used the plant for centuries to treat infections. ScienceDaily. Retrieved May 27, 2017 from www.sciencedaily.com/releases/2017/02/170210084534.htm
Emory Health Sciences. "Brazilian peppertree packs power to knock out antibiotic-resistant bacteria: Amazon traditional healers have used the plant for centuries to treat infections." ScienceDaily. www.sciencedaily.com/releases/2017/02/170210084534.htm (accessed May 27, 2017).

RELATED STORIES