New! Sign up for our free email newsletter.
Science News
from research organizations

Looking at complex light wave forms

Date:
May 31, 2017
Source:
University of Freiburg
Summary:
Using a new method, researchers can see for the first time how weak electric fields evolve in time.
Share:
FULL STORY

For the first time an international research team under the direction of Prof. Dr. Giuseppe Sansone at the Institute of Physics at the University of Freiburg has been able to completely characterize the complex evolution of weak electric fields. The team just published its research findings in the scientific journal Nature Photonics.

Light pulses are electromagnetic waves. Their characteristics such as the direction of oscillation, duration and intensity depend on the spatiotemporal evolution of their electric and magnetic fields. Both of these vectors can run in complex trajectories as a light pulse propagates -- for instance, they can move along a circle, an elliptical or describe any variation thereof. The movement occurs on a timescale of several hundred attoseconds, which is much faster than any ordinary electronic or optoelectronic device can measure: an attosecond is a billionth of a billionth of a second.

In order to observe how the electric field moves anyway, the team developed a method using a so-called attosecond laser. "Using this new tool we were able to produce electrons in the form of wave packets that only last a few hundred attoseconds," explains Sansone. During their dynamics, electrons are very sensitive to any kind of external disturbance. The researchers leveraged this characteristic to modify the electrons' trajectories with weak visible light pulses. They were then able to measure how the trajectories had been altered, thereby deducing the intensity and direction of the electric field. "Our method will enable researchers in the future to have a complete characterization of electronic dynamics in solids by measuring the visible light reflected on its surface," says Sansone.

Researchers at the University of Jena, Max Planck Institute for Nuclear Physics in Heidelberg, the National Metrology Institute of Germany (PTB) in Braunschweig and the Politecnico in Milan and the Istituto di Fotonica e Nanotecnologie (Institute for Photonics and Nanotechnology) in Padua, Italy, contributed significantly to these findings.


Story Source:

Materials provided by University of Freiburg. Note: Content may be edited for style and length.


Journal Reference:

  1. P. Carpeggiani, M. Reduzzi, A. Comby, H. Ahmadi, S. Kühn, F. Calegari, M. Nisoli, F. Frassetto, L. Poletto, D. Hoff, J. Ullrich, C. D. Schröter, R. Moshammer, G. G. Paulus, G. Sansone. Vectorial optical field reconstruction by attosecond spatial interferometry. Nature Photonics, 2017; 11 (6): 383 DOI: 10.1038/nphoton.2017.73

Cite This Page:

University of Freiburg. "Looking at complex light wave forms." ScienceDaily. ScienceDaily, 31 May 2017. <www.sciencedaily.com/releases/2017/05/170531094832.htm>.
University of Freiburg. (2017, May 31). Looking at complex light wave forms. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2017/05/170531094832.htm
University of Freiburg. "Looking at complex light wave forms." ScienceDaily. www.sciencedaily.com/releases/2017/05/170531094832.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES