New! Sign up for our free email newsletter.
Science News
from research organizations

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes

Date:
June 20, 2017
Source:
World Scientific
Summary:
Compositing Cu2O nanoparticles with H2Ti3O7 nanotubes provides an effective strategy to reduce the bandgap energy and the recombination of photo-generated electrons and holes. There is an obvious synergistic effect between guest nanoparticles and host nanotubes due to the interaction to form heterojunction struction, which will enhance photocatalytic oxidation performance for removal of EM due to the stronger visible spectral response and wider absorbance in the long visble light region.
Share:
FULL STORY

Why do we construct nanocomposite for the photocatalytic oxidation desulfurization?

Current hydrodesulfurization (HDS) technology is hard to remove thiols and refractory thiophenic compounds to a minimum in fuels. Moreover, the HDS technology requires severe operation conditions, along with other disadvantages in deep desulfurization. Therefore, considerable attention has been paid to non-HDS techniques, such as adsorption, biodesulfurization and photocatalytic oxidation, etc. Among them, the photocatalytic oxidation desulfurization is the most ideal "green chemistry" technology for deep desulfurization with mild operating conditions. Some researchers have reported nanocomposite as an effective photocatalytic functional material than the host alone, such as Nb6O17@Fe2O3, Cu2O@TiO2 nanotube arrays, etc.

Titanate nanotubes attracted a wide attention for the high photocatalytic activity under UV light irradiation. However, titanates have a relatively wide band gap and is utilize only under UV light, thus the photocatalytic activity is limitation. Moreover, when Cu2O is used as a photocatalyst alone, it is a limitation what the electrons and holes excited by light cannot be transferred efficiently and are easy to recombine. Some team of researchers introduced an innovative strategy by compositing Cu2O nanoparticles with titanate nanotubes, which will result in the stronger visible spectral response and wider absorbance. This technology provides a new approach to reduce the bandgap energy and prolong the separation of photo-generated electron-hole pairs, which resulted in better photocatalytic activities for photodegradation of organic pollutants more thoroughly.

The most significant aspect of my study: Composting Cu2O nanoparticles with H2Ti3O7 nanotubes as an effective photocatalyst applied in desulfurization, it was rarely reported that the construction and desulfurization application of this functional materials before we research. At first, the photocatalytic oxidation desulfurization is the most ideal "green chemistry" technology for deep desulfurization with mild operating conditions than the current HDS technology. Next, We have synthesized the trititanate nanotubes. Previous researches demonstrated that some layered titanates were better photocatalysts, and the corresponding nanosheets and nanotubes even showed much higher photocatalytic activities than the original layered compound. In addition, we have constructed the Cu2O@H2Ti3O7 nanocomposite, the mesoporous nanoscroll composites possess obviously higher photocatalytic activities than guest oxide nanoparticles or host layered materials alone. The researches suggest that layered materials doped with guest nanoparticles can not only reduce the bandgap, but also inhibit the recombination of photoinduced electron-hole pairs. Therefore, we employ Cu2O nanoparticles integrated H2T3O7 nanotubes by a facile hydrothermal method, it shows that nanocomposite exhibits the excellent photocatalytic performance due to the stronger visible spectral response and wider absorbance, this research that could help develop new energy resources (solar energy) and oxidize organic pollutants for protection of the environment.


Story Source:

Materials provided by World Scientific. Note: Content may be edited for style and length.


Journal Reference:

  1. Chunli Guo, Lei Xu, Jie He, Lifang Hu, Bin Wang, Liangguo Da. Enhanced Photocatalytic Activity by Cu2O Nanoparticles Integrated H2Ti3O7 Nanotubes for Removal of Mercaptan. Nano, 2017; 1750075 DOI: 10.1142/S1793292017500758

Cite This Page:

World Scientific. "Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes." ScienceDaily. ScienceDaily, 20 June 2017. <www.sciencedaily.com/releases/2017/06/170620093124.htm>.
World Scientific. (2017, June 20). Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2017/06/170620093124.htm
World Scientific. "Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes." ScienceDaily. www.sciencedaily.com/releases/2017/06/170620093124.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES