New! Sign up for our free email newsletter.
Science News
from research organizations

Re-designing hydrogenases

May 21, 2019
Ecole Polytechnique Fédérale de Lausanne
Chemists have synthesized the first ever functional non-native metal hydrogenase.

Hydrogenases are enzymes that catalyze hydrogen activation. There are three types of hydrogenases in nature, all containing iron and some of them nickel. But in synthetic chemistry there is a whole host of metals that can activate molecular hydrogen and catalyze hydrogenation reactions.

"Why doesn't nature use other metals in hydrogenases? Is it purely due to bioavailability?" asks Xile Hu, head of the Laboratory of Inorganic Synthesis and Catalysis at EPFL. The answer is probably not simple, since metalloenzymes containing molybdenum, manganese, cobalt, and copper are pretty common.

Working with the lab of Seigo Shima at the Max Planck Institute for Terrestrial Microbiology, Hu's lab has now synthesized a manganese-hydrogenase by incorporating a manganese complex into the apoenzyme (the active-site free part) of iron-hydrogenase.

"What is exciting is that this semi-synthetic manganese-hydrogenase is active for the native reaction of iron-hydrogenase," says Hu. This is important because, generally speaking, replacing native metals while maintaining the enzyme's activity is rare. "To our knowledge, this is the first functional non-native metal hydrogenase."

Story Source:

Materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Content may be edited for style and length.

Journal Reference:

  1. Hui-Jie Pan, Gangfeng Huang, Matthew D. Wodrich, Farzaneh Fadaei Tirani, Kenichi Ataka, Seigo Shima, Xile Hu. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nature Chemistry, 2019; DOI: 10.1038/s41557-019-0266-1

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Re-designing hydrogenases." ScienceDaily. ScienceDaily, 21 May 2019. <>.
Ecole Polytechnique Fédérale de Lausanne. (2019, May 21). Re-designing hydrogenases. ScienceDaily. Retrieved December 9, 2023 from
Ecole Polytechnique Fédérale de Lausanne. "Re-designing hydrogenases." ScienceDaily. (accessed December 9, 2023).

Explore More
from ScienceDaily