New! Sign up for our free email newsletter.
Science News
from research organizations

Climate changes faster than animals adapt

Date:
July 23, 2019
Source:
Forschungsverbund Berlin
Summary:
Although animals do commonly respond to climate change, such responses are in general insufficient to cope with the rapid pace of rising temperatures and sometimes go in wrong directions.
Share:
FULL STORY

Climate change can threaten species and extinctions can impact ecosystem health. It is therefore of vital importance to assess to which degree animals can respond to changing environmental conditions -- for example by shifting the timing of breeding -- and whether these shifts enable the persistence of populations in the long run. To answer these questions an international team of 64 researchers led by Viktoriia Radchuk, Alexandre Courtiol and Stephanie Kramer-Schadt from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) evaluated more than 10,000 published scientific studies. The results of their analysis are worrisome: Although animals do commonly respond to climate change, such responses are in general insufficient to cope with the rapid pace of rising temperatures and sometimes go in wrong directions. The results are published in the scientific journal Nature Communications.

In wildlife, the most commonly observed response to climate change is an alteration in the timing of biological events such as hibernation, reproduction or migration (phenological traits). Changes in body size, body mass or other morphological traits have also been associated with climate change, but -- as confirmed by this study -- show no systematic pattern. The researchers extracted relevant information from the scientific literature to relate changes in climate over the years to possible changes in phenological and morphological traits. Next, they evaluated whether observed trait changes were associated with higher survival or an increased number of offspring. "Our research focused on birds because complete data on other groups were scarce," says lead author Viktoriia Radchuk (Leibniz-IZW). She adds: "We demonstrate that in temperate regions, the rising temperatures are associated with the shift of the timing of biological events to earlier dates."

Co-author Steven Beissinger (Professor at the University of California in Berkeley) says "This suggests that species could stay in their warming habitat, as long as they change fast enough to cope with climate change." However, senior author Alexandre Courtiol (Leibniz-IZW) adds "This is unlikely to be the case because even populations undergoing adaptive change do so at a pace that does not guarantee their persistence." Co-author Thomas Reed (senior lecturer at University College Cork, Ireland) explains "These results were obtained by comparing the observed response to climate change with the one expected if a population would be able to adjust their traits so to track the climate change perfectly."

Even more worrisome is the fact that the data analysed included predominantly common and abundant species such as the great tit (Parus major), the European pied flycatcher (Ficedula hypoleuca) or the common magpie (Pica pica) which are known to cope with climate change relatively well. "Adaptive responses among rare or endangered species remain to be analysed. We fear that the forecasts of population persistence for such species of conservation concern will be even more pessimistic" concludes Stephanie Kramer-Schadt (Head of the Department of Ecological Dynamics, Leibniz-IZW). The scientists hope that their analysis and the assembled datasets will stimulate research on the resilience of animal populations in the face of global change and contribute to a better predictive framework to assist future conservation management actions.


Story Source:

Materials provided by Forschungsverbund Berlin. Note: Content may be edited for style and length.


Journal Reference:

  1. Viktoriia Radchuk, Thomas Reed, Céline Teplitsky, Martijn van de Pol, Anne Charmantier, Christopher Hassall, Peter Adamík, Frank Adriaensen, Markus P. Ahola, Peter Arcese, Jesús Miguel Avilés, Javier Balbontin, Karl S. Berg, Antoni Borras, Sarah Burthe, Jean Clobert, Nina Dehnhard, Florentino de Lope, André A. Dhondt, Niels J. Dingemanse, Hideyuki Doi, Tapio Eeva, Joerns Fickel, Iolanda Filella, Frode Fossøy, Anne E. Goodenough, Stephen J. G. Hall, Bengt Hansson, Michael Harris, Dennis Hasselquist, Thomas Hickler, Jasmin Joshi, Heather Kharouba, Juan Gabriel Martínez, Jean-Baptiste Mihoub, James A. Mills, Mercedes Molina-Morales, Arne Moksnes, Arpat Ozgul, Deseada Parejo, Philippe Pilard, Maud Poisbleau, Francois Rousset, Mark-Oliver Rödel, David Scott, Juan Carlos Senar, Constanti Stefanescu, Bård G. Stokke, Tamotsu Kusano, Maja Tarka, Corey E. Tarwater, Kirsten Thonicke, Jack Thorley, Andreas Wilting, Piotr Tryjanowski, Juha Merilä, Ben C. Sheldon, Anders Pape Møller, Erik Matthysen, Fredric Janzen, F. Stephen Dobson, Marcel E. Visser, Steven R. Beissinger, Alexandre Courtiol, Stephanie Kramer-Schadt. Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-10924-4

Cite This Page:

Forschungsverbund Berlin. "Climate changes faster than animals adapt." ScienceDaily. ScienceDaily, 23 July 2019. <www.sciencedaily.com/releases/2019/07/190723121912.htm>.
Forschungsverbund Berlin. (2019, July 23). Climate changes faster than animals adapt. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2019/07/190723121912.htm
Forschungsverbund Berlin. "Climate changes faster than animals adapt." ScienceDaily. www.sciencedaily.com/releases/2019/07/190723121912.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

MORE COVERAGE

RELATED STORIES