New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Bitemporal hemianopsia

Bitemporal hemianopsia (or Bitemporal hemianopia) is the medical description of a type of partial blindness where vision is missing in the outer half of both the right and left visual field. It is usually associated with lesions of the optic chiasm, the area where the optic nerves from the right and left eyes cross near the pituitary gland.

In bitemporal hemianopsia vision is missing in the outer (temporal or lateral) half of both the right and left visual fields. Information from the temporal visual field falls on the nasal (medial) retina. The nasal retina is responsible for carrying the information along the optic nerve, and crosses to the other side at the optic chiasm. When there is compression at optic chiasm the visual impulse from both nasal retina are affected, leading to inability to view the temporal, or peripheral, vision. This phenomenon is known as bitemporal hemianopsia. Knowing the neurocircuitry of visual signal flow through the optic tract is very important in understanding bitemporal hemianopsia.

Bitemporal hemianopsia most commonly occurs as a result of tumors located at the mid-optic chiasm. Since the adjacent structure is the pituitary gland, some common tumors causing compression are Pituitary adenomas, and Craniopharyngiomas. Also another relatively common neoplastic etiology is Meningiomas.

The absence of vision in half of a visual field is described as hemianopsia.

The visual field of each eye can be divided in two vertically, with the outer half being described as temporal, and the inner half being described as nasal.

"Bitemporal hemianopsia" can be broken down as follows:

bi-: involves both left and right visual fields

temporal: involves the temporal visual field

hemi-: involves half of each visual field

anopsia: blindness

Related Stories
 


Health & Medicine News

November 1, 2025

Researchers discovered that altering the body’s natural rhythm can help protect the brain from Alzheimer’s damage. By turning off a circadian protein in mice, they raised NAD+ levels and reduced harmful tau buildup. The findings suggest that ...
New research from Australia overturns the old idea that exercise “uses up” heartbeats. It shows that fitter people actually use fewer total heartbeats each day thanks to their lower resting heart rates, even when accounting for workouts. ...
More screen time among children and teens is linked to higher risks of heart and metabolic problems, particularly when combined with insufficient sleep. Danish researchers discovered a measurable rise in cardiometabolic risk scores and a metabolic ...
People living in socially and economically disadvantaged neighborhoods may face higher dementia risks, according to new research from Wake Forest University. Scientists found biological signs of Alzheimer’s and vascular brain disease in those from ...
Scientists discovered that a blood molecule called CtBP2 may play a major role in how we age. It helps regulate metabolism and appears to link aging across the entire body. Lower levels are tied to poor health and faster aging, while higher levels ...
Semaglutide appears to safeguard the heart even when patients lose little weight. In a massive international trial, heart attack and stroke risk dropped by 20% regardless of BMI. The benefit seems tied not just to slimming down but to deeper ...
Researchers in Japan have revealed how some gourds draw pollutants into their fruits. The secret lies in a protein that carries contaminants through the plant sap. By manipulating this protein’s structure, scientists hope to breed crops that ...
From mini-brains to spider-inspired gloves and wolf apple coatings, scientists are turning eerie-sounding experiments into real innovations that could revolutionize health and sustainability. Lab-grown brain organoids may replace animal testing, ...
By electrically stimulating macrophages, scientists at Trinity College Dublin have found a way to calm inflammation and promote faster healing. The process turns these immune cells into tissue-repairing helpers, enhancing regeneration and blood ...
Researchers used supramolecular nanoparticles to repair the brain’s vascular system and reverse Alzheimer’s in mice. Instead of carrying drugs, the nanoparticles themselves triggered natural clearance of amyloid-β proteins. This restored ...
Flatworms can rebuild themselves from just a small fragment, and now scientists know why. Their stem cells ignore nearby instructions and respond to long-distance signals from other tissues. This discovery turns old stem cell theories upside down ...
People with gum disease may have higher levels of brain white matter damage, a new study finds. Researchers observed that participants with gum disease had significantly more white matter hyperintensities, even after accounting for other risk ...

Latest Headlines

updated 12:56 pm ET